
Jakob Engblom, Intel, Sweden – jakob.engblom@intel.com

Robert Guenzel, Intel, Germany

Fuzzing Hard-to-get-at
Embedded Software
with Virtual Platforms

Embedded Conference Scandinavia 2024 2Copyright © Intel 2024

Software testing technique

Sends “random” inputs to a software component

▪ Inputs should follow the “syntax” of real inputs

▪ Observe the results, look for errors

Finds more problems than manually written tests

▪ Explore corner cases that developers did not think about

▪ Automation = large volume of variant tests

Iterate tests from the same initial state

Huge area of research today! How can we take
advantage of it for hard-to-get-at code?

Fuzzing? Why and What?

Software

Fuzzing tool

Input generator

Initial
state

Test runInput

Test runInput

Test runInput

Test runInput

Inputs Results

Result

Result

Result

Result

Embedded Conference Scandinavia 2024 3Copyright © Intel 2024

However… totally random tests are very
inefficient – mostly thrashing

Solution: coverage-guided fuzzing

▪ Discern the code reached by each test

• I.e., measure the “goodness” of a test case

▪ Can be done without source code!

Mutate the set of test cases

▪ Evolve towards effective tests that are as different
from each other as feasible

▪ Discard tests that do not add coverage

Improves fuzzing effectiveness massively

Coverage-Guided Fuzzing

Software

Fuzzing tool

Code coverage (and other feedback)

Set of inputs

Mutator

Inputs ResultsCoverage

Embedded Conference Scandinavia 2024 4Copyright © Intel 2024

User-level software

Fuzz target (“executor”)

Operating system

Hardware

Fuzzing tool

App

Coverage

Instrumentation

Sanitizers

Inputs

in-software mechanisms

Control

Coverage (etc)

Results

Fuzzer and target run side-by-side
on an operating system

▪ Fuzzer uses host operating-system
mechanisms to control and track the
target

▪ Application compiled with
instrumentation, coverage, and
sanitizers to provide feedback

▪ On Linux, use “fork” to save an initial
state to return to for each test

Works well for user-level software

Standard Coverage-Guided Fuzzing

Embedded Conference Scandinavia 2024 5Copyright © Intel 2024

Definition: “Hard-To-Get-At Software”

Hardware

User-level application code

Operating system

RAMDisk

Core Core

PCIe Net Serial

Core USB

Boot loader

Firmware

Core Core

Subsystem

Device driver

Feature support

Module (UEFI)
Hypervisor

Bare-metal code

Crypto

Embedded Conference Scandinavia 2024 6Copyright © Intel 2024

No help from an operating system

• Where do you run the fuzzing tool?

• How do you get inputs into the target from the fuzzing tool?

• How do you detect a failure when there is no OS underneath to help?

Code insight (coverage) is more difficult to get

• Compilation with instrumentation might be hard (code size, data size, I/O)

• Code runs in protected memory, …

Resetting target state is tricky

• Code works directly with the hardware – how to rewind hardware registers?

• Operating-system forking is not available

Hard-To-Get-At Software and Fuzzing

Embedded Conference Scandinavia 2024 7Copyright © Intel 2024

Intel® Simics® Simulator

Solution: Virtual Platforms

Apps

OS

HW

Run your software without the hardware – on a software model

Embedded Conference Scandinavia 2024 8Copyright © Intel 2024

Technology

▪ Software model of hardware

▪ Run the same software as the hardware

• Same builds, same binaries

▪ Fast enough to run real workloads

Use case examples

▪ Explore system architecture

▪ Develop software early

▪ Continuous integration of software and
hardware

▪ Debug and test software

Virtual Platforms? Why and What?

Virtual platform framework

Target virtual platform (simulated)

User-level application code

Host hardware

Host operating system

Operating system

RAMDisk

Core Core

PCIe Net Serial

Core USB

Boot loader

Firmware

Fuzzing is a
test

technology

Core Core

Subsystem

Hypervisor Bare metal

Embedded Conference Scandinavia 2024 9Copyright © Intel 2024

Note: Shift-Left = Virtual Platform

Hardware/Software
Integration and Test

Hardware-dependent
software development

Hardware design and production

Virtual
platform

Hardware-dependent
software development

Hardware/Software
Integration and Test

Hardware design and production

Software development
and testing shifting left

Time

Traditional
workflow

Shifting
left using
virtual
platforms

Want to apply
fuzzing very early

in the life cycle

Embedded Conference Scandinavia 2024 10Copyright © Intel 2024

Why do Fuzzing on a Virtual Platform?

Shift-left software
quality

• Fuzzing increases quality

• Software can run on VP in
pre-silicon, why wait for
hardware?

Fuzz code with limited
interfaces

• Fuzz code that is hard to
interface with on real
hardware

• VP = access to the platform
internals

Fuzz hardware-
dependent code

• Fuzz code that interacts
closely with hardware

• VP = possible to roll back
disk and peripheral device
state

Richer fuzzing
environment

• VP can observe more types
of failures than hardware

• VPs can inject hardware
stimuli to provoke software

If you have a VP anyway

• Additional value from
existing investment in model

• Avoid constructing
complicated setups based
on a standard VMs

Embedded Conference Scandinavia 2024 11Copyright © Intel 2024

Alternatives to Virtual Platforms?

Port hard-to-get-at
code to run as user-
level program

• Requires
stubbing/faking/simulating
hardware interface

• Not the same code

• Not the same compiler

Use a standard virtual
machine (VM)

• Modify aspects of the target
software to make it work

• Observe execution of code at
OS level

• Compile to the VM = compile
for the host architecture

• Does not provide the actual
target hardware

Use generic
instruction-set
simulators

• Fudge the interface to
peripherals

• Various generation schemes
have been proposed for the
peripheral/hardware side

Much easier to just use a virtual platform of the hardware

Embedded Conference Scandinavia 2024 12Copyright © Intel 2024

Fuzzing individual applications running
inside a standard software stack

Fuzzing difficult-to-get-at code that runs
directly on the hardware

Black-box fuzzing at target system
boundary

User-level software

Fuzz target

Typical Fuzzing Setups and Virtual Platforms

User-level software

Operating system

Hardware

Fuzzing tool

Fuzz target

Operating system

Hardware

Fuzzing tool
App

Hardware

Fuzz target

Firmware/Boot/Operating

Fuzzing tool

(User-level software)

• VP use: replace the physical
hardware with virtual hardware

• Same input/output, standard
real-world connections suffice

• Easy to do with standard tools
• VP use: when user-level software

uses new hardware (instruction
sets etc.) – run on VP

• Not feasible with standard tools
• Requires support in the VP to

interface the fuzzer and the
software

• Focus of this presentation

Embedded Conference Scandinavia 2024 13Copyright © Intel 2024

Virtual platform tool

C
al

la
b

le
/R

u
n

n
ab

le

si
gn

at
u

re

Concept: Make the virtual platform look like a user-level program

▪ Reuse existing fuzzers and their fuzzing logic as-is…

▪ … while facilitating access to the software using virtual-platform techniques

Virtual-Platform-Based Guided Fuzzing

User-level
process

C
al

la
b

le
/R

u
n

n
ab

le

si
gn

at
u

re

Test driver

Fuzzing tool

Fuzzing tool

Fuzzed
module/component

Firmware

Target virtual platform (simulated)

Test driver

Fuzzing
support
modules

User-level software
function signature

of the fuzzing
target – exposed
by the simulator

Fuzzed
module/component

Test driver: code that
is added to the target

software to drive
inputs into the right
part of the software

Embedded Conference Scandinavia 2024 14Copyright © Intel 2024

C
al

la
b

le
/R

u
n

n
ab

le
 s

ig
n

at
u

re

ju
st

 li
ke

 a
 u

se
r-

le
ve

l t
ar

ge
t

Virtual platform tool

Firmware

Target virtual platform

Fuzz target

Input driver

Inputs

System monitor

Coverage collector

State manager

Fuzzing tool

Inputs

Control

Coverage (etc)

Results

Virtual-Platform-Based Guided Fuzzing: Details

Test driver

Fuzzed module/component

Using virtual platform
features to collect coverage,

detect failures, and push
inputs into the target

software
The fuzzing tool is
independent and

unaware of the virtual
platform

simulator mechanisms

in-software mechanisms

Fuzzing support
modules

Embedded Conference Scandinavia 2024 15Copyright © Intel 2024

C
al

la
b

le
/R

u
n

n
ab

le

si
gn

at
u

re

Intel® Simics® Simulator

Test driver (target software)

▪ Depends on target and fuzzing setup

• Knows how to call into/activate the target

• Knows how to apply inputs from fuzzer

▪ Magic instructions: key VP trick

• Test driver issues magic instruction when ready to receive data

• Input driver catches the magic callback and fills in next test case

▪ (Adding to target software stack is the only robust
solution; calling into software from VP directly is difficult
and brittle)

Input driver (simulator module)

▪ Implements the interface towards the fuzzing tool –
depends on how the simulator and fuzzer communicate

▪ Passes data from the fuzzer to the test driver software –
dumb pipe

Test Driver and Input Driver

Firmware

Target virtual platform

Fuzz target

Fuzzed module/component

Test driver

Input driver

Input

Fuzzing tool

Inputs

loop:
 MAGIC() // signal
 input=read(buffer)
 firmware(input)

Magic instruction
callback

RAM
Core

Write memory
buffer Shared memory,

socket, file, …

Input

Embedded Conference Scandinavia 2024 16Copyright © Intel 2024

Wait for conditions that indicate success or failure in the
system under fuzz

▪ Watch using breakpoints

▪ Software is not modified or instrumented

▪ Success is usually “called function returns OK”

Example conditions:

▪ Running code outside of allowed ranges

▪ Memory accesses outside of allowed ranges

▪ Executing undefined instructions

▪ Triggering interrupts

▪ Processor resets and triple faults

▪ … whatever makes sense …

The set of events to watch depends on the
system and software

▪ (It is easier for user-level fuzzing where
signals/segmentation faults & sanitizer errors cover
most)

System Monitor

Intel® Simics® Simulator

Target virtual platform

Firmware

Core
System monitor

Breakpoints
(and other

events)RAM Devices

Monitor breakpoints
from setup script:

(breakpoint,
explanation)

Embedded Conference Scandinavia 2024 17Copyright © Intel 2024

Intel® Simics® Simulator

Current solution: Branch (edge) coverage

▪ The virtual platform processor core simulator reports all branch
instructions to a coverage tool

▪ Coverage data looks like it came from code instrumentation

▪ Hashing-based algorithms

• Record all branch instructions

• Address hashing = no need to know where the code of interest is in memory

This is “grey-box” fuzzing: coverage
measurement without source code

▪ Watch the code execution “from the hardware”

▪ No source code needed

▪ No compiled-in instrumentation

▪ … but still looking at the code flow

Technicality: note that compiling-in the test
driver makes that part of the process “open-box”,
so the overall approach is not fully grey-box

Coverage Collection

Target virtual platform

Firmware

Core

Coverage collector

Instrumentation callback
on branch instructions

Embedded Conference Scandinavia 2024 18Copyright © Intel 2024

Recall, fuzzing = many short test runs starting
from a reused common starting point

▪ The system state restore is critical

▪ Virtual platform = all hardware state is under control

Simulation state is restored using simulator in-
memory snapshots

▪ Processor and device state

▪ Memory and disk contents

▪ Not including the simulator core and features

Why not fork the VP process?

▪ Linux fork does not work well with a threaded simulator

▪ What to do on Windows hosts?

State Management: In-Memory Snapshots

Intel® Simics® Simulator

Most recent snapshotVirtual platform state

Device and processor
state (time, event queue,
registers, configuration,
…)

Memory diff

Disk diff

Memory diffs

Older snapshot

diff
Memory
starting point

diff

Disk diffs
diff

Disk starting
point

diff

Device and
processor state

Device and
processor state

Features and utilities state

Simulator core state

Embedded Conference Scandinavia 2024 19Copyright © Intel 2024

Main fuzzing loop

Complete Fuzzing Flow using a Virtual Platform

Software boot
and setup

Save state

Restore state

Saved
(initial)

state

Initial
state

for
fuzzing

Load input Run test case

Reset

Detect stop condition

Success

Failure

Simulator
startup

(Runs VP)

(Runs VP)
Create platform setup

Load software

Set up monitor breakpoints

Script software initialization

Returns information to
the fuzzer

Fuzzer orders a
reset to start the

next iteration

Fuzzer
provides the
input for the

next test

Coverage

Determining that the platform has reached
the initial state is part of the setup script.
Can be based on printouts, time, magic

instructions, …

Embedded Conference Scandinavia 2024 20Copyright © Intel 2024

We have applied virtual-platform-based fuzzing internally at Intel

▪ Cannot talk about concrete application due to sensitivity

▪ But it has worked

The TSFFS fuzzing setup, https://github.com/intel/tsffs/, is an
open-source virtual-platform-based fuzzer for the Intel® Simics®
Simulator

▪ Reports about 200 iterations per second for small virtual platforms

Experience

https://github.com/intel/tsffs/

Embedded Conference Scandinavia 2024 21Copyright © Intel 2024

Get the Intel® Simics® Simulator
https://developer.intel.com/simics-simulator

Try the TSFFS fuzzing setup (close to what was presented here)
https://github.com/intel/tsffs/

Questions?

https://developer.intel.com/simics-simulator
https://github.com/intel/tsffs/

Embedded Conference Scandinavia 2024 22Copyright © Intel 2024

Legal Disclaimers

Intel technologies’ features and benefits depend on system configuration and may
require enabled hardware, software or service activation. Learn more at intel.com, or
from the OEM or retailer.

No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific
systems. Differences in hardware, software, or configuration will affect actual
performance. Consult other sources of information to evaluate performance as you
consider your purchase. For more complete http://www.intel.com/performance.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Other names and brands may be claimed as the
property of others.

*Other names and brands may be claimed as the property of others.

http://www.intel.com/performance

	Default Section
	Slide 1: Fuzzing Hard-to-get-at Embedded Software with Virtual Platforms

	Intro - fuzzing
	Slide 2: Fuzzing? Why and What?
	Slide 3: Coverage-Guided Fuzzing
	Slide 4: Standard Coverage-Guided Fuzzing

	Hard to get at
	Slide 5: Definition: “Hard-To-Get-At Software”
	Slide 6: Hard-To-Get-At Software and Fuzzing

	Virtual platforms
	Slide 7: Solution: Virtual Platforms
	Slide 8: Virtual Platforms? Why and What?
	Slide 9: Note: Shift-Left = Virtual Platform

	Combo
	Slide 10: Why do Fuzzing on a Virtual Platform?
	Slide 11: Alternatives to Virtual Platforms?

	Fuzzing setups
	Slide 12: Typical Fuzzing Setups and Virtual Platforms

	Solution
	Slide 13: Virtual-Platform-Based Guided Fuzzing
	Slide 14: Virtual-Platform-Based Guided Fuzzing: Details
	Slide 15: Test Driver and Input Driver
	Slide 16: System Monitor
	Slide 17: Coverage Collection
	Slide 18: State Management: In-Memory Snapshots
	Slide 19: Complete Fuzzing Flow using a Virtual Platform
	Slide 20: Experience
	Slide 21

	End
	Slide 22: Legal Disclaimers

	END
	Slide 23

