
Intel® Simics® Virtual
Platforms in Industry
Dr. Jakob Engblom, Director, Simulation Technology Ecosystem

Intel, Stockholm, Sweden

jakob.engblom@intel.com

mailto:Jakob.engblom@intel.com

Intel® Simics® Virtual Platforms 3Copyright © Intel 2024

About Me: Jakob Engblom

Currently:

▪ Director (of Simulation
Technology Ecosystem), Simics
Core team, at Intel in Stockholm,
Sweden

Education:

▪ MSc, Computer Science, and PhD, Real-Time
Systems, Uppsala

Experience: virtual platforms, simulation,
embedded systems

▪ Product management, product marketing,
technical sales, technical marketing, business
development, training development, demos, ... At
IAR Systems, Virtutech, Wind River, and Intel

My own blog, since 2007:

▪ https://jakob.engbloms.se

Intel software blog:

▪ https://community.intel.com/t5/Blogs/Products-
and-Solutions/Software/bg-p/blog-software

http://jakob.engbloms.se/
https://community.intel.com/t5/Blogs/Products-and-Solutions/Software/bg-p/blog-software
https://community.intel.com/t5/Blogs/Products-and-Solutions/Software/bg-p/blog-software

4Intel® Simics® Virtual PlatformsCopyright © Intel 2024

Introducing Intel®

O N E I N T E L O V E RV I E W

Software
Silicon &

Platforms
Packaging
& Process

At-Scale Manufacturing

The leading provider of si l icon global ly

intel advantage

O N E I N T E L O V E RV I E W

Client Computing Datacenter & AI Network & Edge

Accelerated
Computing Systems

& Graphics
Automotive Foundry Services

Make PCs
indispensable
for work, play,

learning, creating
and collaborating

with a vibrant
ecosystem

of innovation

Develop the best
cloud and data

center solutions
for diverse
customer

workloads with
leadership in AI

Provide cloud
to intelligent

edge network
infrastructure by
delivering 5/6G,

Edge-AI, NIC/
Switch, SiPh
and Software

disruptions
at scale

Become the
No. 1 provider

of accelerated
compute through

graphics, GPU
and HPC – first

to Zettascale

Be the leading
provider of

autonomous
vehicle

technology

Become the
No. 2 foundry
provider this

decade

Product Leadership

O N E I N T E L O V E RV I E W

Intel software
powers much
of the world’s
computing

Network/Edge

Floating Point
Standard

Standards

DDRx Responsibility
Sensitive

Safety

RSS

on the Intel Developer Catalog
for developers to create and

deploy solutions

Software
tools &
resources 450+

Linux kernel corporate
contributor since 2007

#1

Foundations and standards
bodies with Intel

700+
on the Intel Developers

Catalog for AI workloads

Software
tools &
resources 150+

community managed projects
contributed to and maintained

300+
contributor to Kubernetes

top 10

Open Platforms

O N E I N T E L O V E RV I E W

Geographically Diverse Manufacturing Capacity

Intel
Worldwide

Headquarters
Santa Clara, California

Wafer Fabs Assembly & Test Future Site

Oregon Arizona New Mexico Ireland Israel VietnamChengdu MalaysiaCosta Rica GermanyOhio Poland

9Intel® Simics® Virtual PlatformsCopyright © Intel 2024

The Intel® Simics®
Simulator

Intel® Simics® Virtual Platforms 10Copyright © Intel 2024

The History of the Intel® Simics® Simulator

Development started in 1991

▪ Spin-off from research project

▪ Pre-silicon OS bring-up.

Virtutech founded in 1998

▪ Sun* & Ericsson* first customers

Acquired by Intel in 2010

Wide usage

▪ Intel-internal

▪ Intel ecosystem

▪ Commercial customers via Wind River*

▪ Academics and OSS via public release

Major milestones

▪ 2.0: Heterogeneous system models

▪ 3.0: Reverse execution & debug, 2005

▪ 3.2: Intel virtualization acceleration

▪ 4.0: Multi-threaded (coarse), 2008

▪ 4.2: Distributed simulation, 2009

▪ 5: Multicore multithreading, 2015

▪ 6: More threading & better support for model
integrations, 2018

• Integration with power, thermal, performance models

• Continuously adding features

▪ 7: Clean up & modernizations, 2023

• Removing older APIs and features to focus on the new

Intel® Simics® Virtual Platforms 11Copyright © Intel 2024

What Does Intel® Do and Where do We Fit?

•Intel® Core®

•Intel® Atom

•Chipsets

•Thunderbolt*

•Graphics Processors
(GPU)

Laptop and
desktop

•Intel® Xeon®

•Chipsets

•Infrastructure
processing units (smart
network)

•GPU

Data Center

•Movidius

•Habana

•Intel® Xeon®

•GPU

•AI PC

AI and ML

•Ethernet

•WiFi

•Bluetooth

•GNSS

Connectivity

•FPGA

•SoC-FPGA

•eASIC hard-copy

FPGA
(Now Altera®)

•Quantum computing

•Neuromorphic
computing

•Software

Intel Labs

•Intel Foundry Services

Foundry

•OneAPI

•Development tools

•Compilers

•Simulation solutions

•Linux & Windows drivers

•UEFI & BIOS

Software

12Intel® Simics® Virtual PlatformsCopyright © Intel 2024

Virtual Platforms
Why and What?

Intel® Simics® Virtual Platforms 13Copyright © Intel 2024

Hardware: A Hard Development Platform?

Intel® Simics® Virtual Platforms 14Copyright © Intel 2024

Hardware is Hard When it is in...

Not yet available Flaky prototype stage Not available anymore

Intel® Simics® Virtual Platforms 15Copyright © Intel 2024

Hardware is Hard When it is...

Inconveniently large & complex Dangerous to play with Inaccessible & expensive

Intel® Simics® Virtual Platforms 16Copyright © Intel 2024

Intel® Simics® Simulator

The Idea of a Virtual Platform

Apps

OS

HW

Run your software without the hardware – on a software model

Intel® Simics® Virtual Platforms 17Copyright © Intel 2024

Running the Real Software

Purpose:

▪ Test & debug the software and the software-visible aspects of the hardware

“Software” can mean many things…

▪ Firmware, that is deeply hidden inside a chip

▪ BIOS/Bootloader/UEFI, that is used to boot the machine

▪ Device drivers, that manage hardware for an operating system

▪ Operating systems

▪ Middleware, providing services for other software

▪ Applications, that any programmer would write

▪ Distributed systems, software running across many separate machines

▪ From bytes to terabytes of code!

Intel® Simics® Virtual Platforms 18Copyright © Intel 2024

Inside a Typical Virtual Platform

Intel® Simics® Simulator

RISC-V* Simple

Linux

Serial

User Applications

plic

System memory map

Virtio
net

RISC-V
hart

RISC-V
hart

RISC-V
hart

Virtio
block

device

Virtio
block

device

Virtio
block

device

Virtio
random

Network

Other hardware

Operating system

User Applications

RAMclint

Processors

Devices

Buses and
interconnects

Buses and
interconnects

Unmodified
target

software

Bootloader

Intel® Simics® Virtual Platforms 19Copyright © Intel 2024

Goal: Fast & scalable simulation Transaction-level modeling (TLM) Lazy and agile modeling

Goal: run the real software Model function & basic timing Add details when and where needed

Intel® Simics® Simulation: Level of Abstraction
S

c
o

p
e

 a
n

d
 s

p
e

e
d

Detail of model

A BT

A B

User application code

Target operating system (s)

Middleware and libraries

Target model includes all software-visible
functional aspects of hardware, such as
processor instructions, supervisor modes,
device registers, interrupts, etc.

Processor

instruction

set

System

memory map

(not bus

system)

Device

register

interface

Loose timing

model

Packet-level

models of

networks

Event-driven

simulation, not

cycle-driven

Time

Build up the model piece by piece over time, as use cases
materialize or become possible. Only model what is
needed for current use cases.

Processor

performance

models

Device

performance

models

Power and

thermal

models

Hardware RTL

Cache and

memory

system

models

Boot/BIOS/UEFI Drivers

21Intel® Simics® Virtual PlatformsCopyright © Intel 2024

The Intel® Simics®
Simulator

Use Cases

Intel® Simics® Virtual Platforms 22Copyright © Intel 2024

Virtual Platforms & the Product Lifecycle

Design &
Architecture

Bring-up,
platform

development

(shift-left)

Application
development,

software
development

tools,
validation

Deployment
&

maintenance
of “old”

systems

Product Timeline

Test and
continuous

integration &
delivery

Intel® Simics® Virtual Platforms 23Copyright © Intel 2024

Getting the Architecture Right

Intel® Simics® Virtual Platforms 24Copyright © Intel 2024

Computer Architecture (on Virtual Platform)

“Build 1000 times in simulation, 1 time for real”

▪ Processor, pipeline, cache design

▪ New instructions & execution modes

▪ Hardware accelerator design

▪ Hardware-software interface design

▪ Hardware-software codesign & optimization

Software
Software

Software workload

Run on combined virtual
platform & architecture

model

Performance, time, power,
statistics, ...

Update
design &

model

Build model
Design / architecture

specification

Update
software

Intel® Simics® Virtual Platforms 25Copyright © Intel 2024

Intel® Simics® Simulator

Computer Architecture: for Subsystem

Platform model

Target operating system

Detailed model of the
accelerator subsystem

Device driver

Core RAM

APIC

Disk

Benchmark, traffic generator, real-world application, …

Eth. Network

Target machine

OS

Traffic
generation

Firmware

Core

Network traffic
generation inside

or outside of
Simics

Design/architecture
model of the accelerator

block

(example here is a
network traffic

processing block)

Evaluate the
performance of the

accelerators under real
workloads

FLASH

USB Serial GPU

Evaluate the efficiency
of the

software/hardware
interfaces of the

accelerator

Traffic generator

Intel® Simics® Virtual Platforms 26Copyright © Intel 2024

Intel

Instruction-Set-Level Computer Architecture

Architecture happens at the instruction-set
level as well as microarchitecture

Example: “Flexible Return and Event
Delivery” (FRED)

▪ New way to handle exceptions and interrupts in
the Intel Architecture

Intel® Simics® virtual platforms used as “test
hardware” for external software developers

▪ For Linux developers, provided together with
Linux kernel patches from Intel’s Linux developers
– software is needed

▪ Collect feedback from external (operating-
system) developers, improve the design

FRED specification

Virtual
Platform

Open-
source

developers
and external

vendors
Feedback

Revised FRED
specification

Updated
VP Open-

source
developers

and external
vendorsFeedback

Revised FRED
specification

Linux patches

Linux patches

Intel® Simics® Virtual Platforms 27Copyright © Intel 2024

Getting Software Done Early

Intel® Simics® Virtual Platforms 28Copyright © Intel 2024

Shift-Left / Early Software Development

Hardware/Software
Integration and Test

Hardware-dependent
software development

Hardware design and production

Virtual
platform

Hardware-dependent
software development

Hardware/Software
Integration and Test

Hardware design and production

Software development
and testing shifting left

Time

Traditional
workflow

Shifting
left using
virtual
platforms

Classic use case – Earliest examples from the 1950s

Intel® Simics® Virtual Platforms 29Copyright © Intel 2024

Shift-Left: With the Ecosystem

Chip/Platform

(Custom) Board

OEM Product

Silicon vendor builds basic code,
makes sure the platform works

Board designer adds more
components, ports more operating

systems, validates additional
functionality

Typically, this is a customer of
the silicon vendor, a separate
company

OEMs build on the boards to
build complete products.

Digital twins

Virtual system integration

Could be the same company as the board
designer, or yet another company

Intel® Simics® Virtual Platforms 30Copyright © Intel 2024

Testing Software
at the System Level

Intel® Simics® Virtual Platforms 31Copyright © Intel 2024

System-Scale Simulation Example

Intel® Simics® Simulator

Future Server Platform 1 – Database server

Processor
socket 1

96GB RAM

Disk

Processor
socket 2

PCH

96GB RAM

Core Core Core Core

10G Eth Network

Future Server Platform 2 – App server

Processor
socket 1

96GB RAM

Disk

Processor
socket 2

PCH

96GB RAM

Core Core Core Core

10G Eth

Linux* Distribution

User land

Linux* Distribution

Database program
User land

Application server (payload)

SpecJEnterprise* driver
utility

Java* Virtual Machine (JVM)

UEFI (Unified Extensible Firmware Interface) UEFI

Disk image
contents: OS +
user software

https://software.intel.com/en-us/blogs/2018/03/15/software-on-wind-river-simics-virtual-platforms-then-and-now

Update software stack to use
latest hardware instruction
sets and features

Ensure integration of
hardware, boot code, drivers,
OS, and applications work –
before the silicon arrives

This particular example: silicon
vendor + software vendor
cooperating on next-gen hardware
tuning

https://software.intel.com/en-us/blogs/2018/03/15/software-on-wind-river-simics-virtual-platforms-then-and-now

Intel® Simics® Virtual Platforms 32Copyright © Intel 2024

Developer Changes or
Adds Code

Unit Test

Subsystem-Level Test

System-Level Test

OK

Pre-CI Test Build System

Tests running mostly on simulation in
order to:

• Do integration pre-si and post-si

• Shorten test latency

• Run each test more often

• Run more and more varied
configurations

• Provide suitable configurations

• Test what cannot be tested on
hardware

Continuous
Delivery

Quality
Assurance

Continuous Integration
and Virtual Platforms

Intel® Simics® Virtual Platforms 33Copyright © Intel 2024

Allowing More Tests for Difficult Hardware

Hardware availability is often a
bottleneck in embedded systems
testing

Classic customer case

▪ Hardware = Integration testing every week

• Bugs creep back in

• Impossible to go Agile

▪ Virtual platforms provided more targets

• Integration testing daily

▪ = Higher quality, less rework, more agile
development flow

Virtual platform

Software Under
Test

Virtual platform

Software Under
Test

Virtual platform

Software Under
Test

Virtual platform

Software Under
Test

Physical platform

Software Under
Test

T
e

s
t

S
y

s
te

m

Intel® Simics® Virtual Platforms 34Copyright © Intel 2024

Intel® Simics® Simulator

C
al

la
b

le
/R

u
n

n
ab

le

si
gn

at
u

re

Virtual-Platform-Based Guided Fuzzing

User-level
process

C
al

la
b

le
/R

u
n

n
ab

le

si
gn

at
u

re

Test driver

Fuzzing tool

Fuzzing tool

Fuzzed
module/component

Firmware

Target virtual platform (simulated)

Test driver

Fuzzing
support
modules

Concept: Make the virtual platform look like a user-level program

▪ Reuse existing fuzzers and their fuzzing logic as-is…

▪ … while facilitating access to the firmware using virtual-platform techniques

User-level software
function signature

of the fuzzing
target

Fuzzed
module/component

Intel® Simics® Virtual Platforms 35Copyright © Intel 2024

Complete simulation system

Simulation of the world in which the system
operates

System being designed

Intel® Simics® Simulator

Integrating Environment Simulation

Simulation of the system mechanics,
electronics, physics, …

Actuator
simulation

Sensor
simulation

Different simulators used
for different parts of the

complete simulation

Control application

Control computer

Target OS

IO device

IO device

36Intel® Simics® Virtual PlatformsCopyright © Intel 2024

Intel® Simics®
Simulator
Technology

Intel® Simics® Virtual Platforms 37Copyright © Intel 2024

Intel® Simics® Simulator

Target Machine (Virtual Platform)

Processor core

Intel® Simics® Simulator Architecture

D
y

n
a

m
ic

m

o
d

u
le

s

DevicesDevicesDevices

Processor cores

DevicesDevicesNetworks
and IO

Target operating system

Target hardware drivers

User program Middleware

Target boot code

User program

Target ISA decoder

JIT
Compiler

Interpreter

Simics
Core

Configuration
management

Core Services
API

Inspection

Run Control

Setup

Features

CLI

GUI

Python

Scripting

Built-in
Debugger

Device Network
Proc.
core

SoC/
Chip

Inter-
connect

Config
scripts

VMP

External
I/O

Ethernet,
Serial,

Keyboard,
Mouse,

….

Scheduler
Multithreading

and scaling

DevicesDevicesMemories

Libraries

External
Tools

Eclipse GUI,
debuggers,

network
analyzers, …

All devices,
processors, etc., are
loaded dynamically
from modules.

Running simulation
consists of a large
number of objects
(10000-100000 for
an Intel platform)

All connections with
the outside world
should pass through
dedicated interface
objects – models
should never directly
talk to the host.

Features are built
outside of the target
system and should
apply across different
system models.

Intel® Simics® Virtual Platforms 38Copyright © Intel 2024

Scalable &
heterogeneous

Scripting Bit-exact function Real-world
connections

Checkpoint and restore Fault injection &
control

Multicore & -machine
multithreading

Modular &
user-extensible

con0.wait-for-string "$“

con0.record-start

con0.input "./ptest.elf 5\n"

con0.wait-for-string "."

$r = con0.record-stop

if ($r == "fail.”) {

echo ”test failed”

}

System Level Features

Intel® Simics® Virtual Platforms 39Copyright © Intel 2024

Insight into all
components

Synchronous entire-
system stop

Trace anything System-level symbolic
debug

Unlimited powerful
breakpoints

Record-replay debug Repeatability &
snapshots

Collaboration between
developers

Debugging Features

Code execution
Exceptions
Register changes
Memory accesses

On arbitrary areas
Hardware device accesses
Time
Simulator events

Test

Test

Test

Test

Test

Debug

Intel® Simics® Virtual Platforms 40Copyright © Intel 2024

How to build a fast virtual platform

Fast Instruction-Set Simulator (ISS)

Functional abstraction level
Just-in-time compilation (JIT)
Virtualization
Simplified timing
Temporal decoupling

Fast Device Models

Transaction-Level Modeling (TLM)

Event-driven simulation

Simplified timing

Efficient Framework

Reduce overheads

Multithreading

Optimize, optimize, optimize

Tailored Configurations

Configurations optimized for each use case

Highest-possible level of abstraction

Use different models in different cases

Intel® Simics® Virtual Platforms 41Copyright © Intel 2024

What Performance do you Need for a Particular Use Case?

Slowdown Use cases where this works Notes

1/10 Long-term testing of a mostly idle system
Depends on system being idle,

or very slow in the real world

1 Hardware-in-the-loop
Simulators trying to stay locked to real-

world time

10
Edit-compile-test, volume software testing,

interactive usage of virtual platform

100 Automatic testing of complex setups
Slow execution due to large models or

some details in the models

100000
Computer architecture, detailed performance

modeling, run short segments of code
Design models run at 100k slowdown or

more

Intel® Simics® Virtual Platforms 42Copyright © Intel 2024

Host
operating

system

Intel® Simics® Simulator

Host hardware

Intel® Simics® Simulator

Host hardware

Intel® Simics® Simulator Instruction Execution
Intel® Simics® Simulator

Virtual platform

Host hardware

Interpreter

Virtual platform

Just-in-time
compiler

Virtual platform

Virtualization

Virtualization driverHost operating system Host operating system

Target
code

Target
code

Target
code

Host
code

Performance

Completeness

Intel® Simics® Virtual Platforms 43Copyright © Intel 2024

Threading in the Simics® Simulator – Use Cases

Intel® Simics® Simulator

Target

Intel® Simics® Simulator

Intel® Simics® Simulator Intel® Simics® Simulator

Target

Network

“Multimachine Accelerator “
Thread across long-latency networks

“Multicore Accelerator” (MCA)
Thread between processor cores sharing memory

Target

Processor
core

Memory

Devices

Processor
core

Processor
core

Processor
core

Target

Processor
core

Complex
Subsystem

Processor
core

Processor
core

Memory

Devices

“Subsystem multithreading”
Run separate (definition) subsystems on their own threads

Target

Interface
External

software,
emulator, etc.

Multithreading as coding pattern
Use a thread to interact with the outside asynchronous world

Devices

Complex
Subsystem

Processor
core

Devices

Intel® Simics® Virtual Platforms 44Copyright © Intel 2024

Inside a Modern System-on-Chip (SoC)

System-on-Chip

Main software cores

Power
management Security

AudioWiFi USB-C
Image

processing

Graphics

AI/Neural Network accelerators

Intel® Simics® Virtual Platforms 45Copyright © Intel 2024

Result: Virtual Platforms get Bigger Over Time

2010 Model

2024 Model

Processors: 2
Devices: 100
Subsystems: 0

Objects: 200

Processors: 2-200
Devices: 2_000
Subsystems: 10

Objects: 100_000

Intel model library

Buses and interconnects (20+)

Processor cores (100+)

Devices (10000+)

More of the
system is

modeled, in
more detail

Intel® Simics® Virtual Platforms 46Copyright © Intel 2024

Parts of a Device Model – More Details

Programming registers

Software

(Configuration)
Attributes

Internal state
representation

(arbitrary)

Connect

Port

Simulator core

Tools

Configuration

User

Breakpoints
Other device, bus, real-

world connection, …

Port

Connect

Events (time)

Behavioral
logic Instrumentation

Notifiers Notifiers

Intel® Simics® Virtual Platforms 47Copyright © Intel 2024

// Example device model
dml 1.4;

device sample_i2c_device;

import "simics/devs/i2c.dml"; // generic i2c
import "platform-i2c.dml"; // i2c logic shared with other platforms
import "fuse-common.dml"; // common platform fuse mechanisms

// generated code with register declarations
import "DevBank_gen_code.dml";

// instantiate the register bank from the file
bank regs is i2c_ctrl_reg_bank {
register hst_cnt { // Added manual code

method write_action() {
if (START.get() != 0) {

START.set(0);
send_start();

} } } }

// Generated file DevBank_gen_code.dml
dml 1.4;
import "access_templates_14.dml";

template i2c_ctrl_reg_bank {
param bank_reset_signal default undefined;

register hst_sts @ 0x00 is (read_write) "Host Status";
register hst_cnt @ 0x02 is (read_write) "Host Control";
// array of registers
register tx[i < 8] @ 0x08 + i is (read_write) "Transmit data";

// flesh out fields in hst_sts
register hst_sts {

field BYTE_DONE_STS @ [7:7] is (write_1_clears);
field INUSE_STS @ [6:6] is (write_1_clears);
...

https://github.com/intel/device-modeling-language

Make device modeling easy

▪ Make it hard to write bad models

Provide natural modeling constructs

▪ Register, bit field, banks, connects, ...

▪ Readability and maintainability

▪ Easy to generate register layouts from machine-readable
specifications

Powerful templating mechanisms

▪ Common behaviors

▪ Common types of devices

▪ Support library behind code generation

▪ ...

Generates C code with Intel® Simics® Simulator API calls

The Device Modeling Language

https://github.com/intel/device-modeling-language

Intel® Simics® Virtual Platforms 48Copyright © Intel 2024

Intel® Simics® Simulator

Future Platform model

Working with Firmware and Subsystems

User-level application code

Operating system (OS)

Core

RAM

Other devices

Subsystem

Core

Accelerator

Firmware

Core Core

Registers

Devices

Disk

Driver

Subsystem

Core

RAM

Firmware

CoreRegisters

Devices

S
y

s
te

m
 in

te
rc

o
n

n
e

c
t

Network

A. Test driver interaction
with subsystem firmware

B. Test how different
subsystems interact –
integration is always “fun”

C. Test firmware interaction
with other hardware

D. Test firmware interaction
with external world

Intel® Simics® Virtual Platforms 49Copyright © Intel 2024

Model Abstraction Levels/Variants

Transaction-Level
behavioral model

Transaction-Level firmware model

Firmware

TLM
model

TLM ISS
TLM

model

TLM
model

TLM
model

TLM
model

Design/Architecture Model

Detailed model Detailed ISS

Detailed model Detailed model

Detailed model

Detailed model

Firmware

Registers

Connections

Registers

Connections

Registers

Connections

Behavior

TLM stub model

Registers

Connections

Behavioral models
are built first –

provide a complete
system model

Firmware models
provide more depth –
interchangeable with
behavioral model for
different use cases

Architecture models
contain much more

detail – run 1000x
slower (or more)

Sometimes, a dummy
or stub is all that is

needed

DML –
easy for

stubbing

DML used
for device

models (but
not ISS)

Standard
scenario
for DML

Intel® Simics® Virtual Platforms 50Copyright © Intel 2024

Coding in All the Languages ☺

C/C++ Python
Device Modeling

Language
SystemC Javascript Rust Simgen

Scripts of various
types

Simulator core X X X

User features X X X

User interfaces X X X

Utilities and tools X X X X X

Processor
models

X X

Device models X X X X X

Intel® Simics® Virtual Platforms 51Copyright © Intel 2024

Open for questions
and discussions!

52Intel® Simics® Virtual PlatformsCopyright © Intel 2024

Public Release
of Intel® Simics® and
Intel® Integrated
Simulation Infrastructure
with Modeling (Intel®
ISIM)

Download and Learn More at

https://software.intel.com/intel-isim

https://software.intel.com/intel-isim

Intel® Simics® Virtual Platforms 53Copyright © Intel 2024

Legal Disclaimers

Intel technologies’ features and benefits depend on system configuration and may
require enabled hardware, software or service activation. Learn more at intel.com, or
from the OEM or retailer.

No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific
systems. Differences in hardware, software, or configuration will affect actual
performance. Consult other sources of information to evaluate performance as you
consider your purchase. For more complete http://www.intel.com/performance.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Other names and brands may be claimed as the
property of others.

*Other names and brands may be claimed as the property of others.

http://www.intel.com/performance

	Default Section
	Slide 1: Intel® Simics® Virtual Platforms in Industry
	Slide 3: About Me: Jakob Engblom

	Intel Global
	Slide 4: Introducing Intel®
	Slide 5
	Slide 6: Product Leadership
	Slide 7: Open Platforms
	Slide 8

	Intel simulator
	Slide 9: The Intel® Simics® Simulator
	Slide 10: The History of the Intel® Simics® Simulator
	Slide 11: What Does Intel® Do and Where do We Fit?

	Why virtual platform?
	Slide 12: Virtual Platforms Why and What?
	Slide 13: Hardware: A Hard Development Platform?
	Slide 14: Hardware is Hard When it is in...
	Slide 15: Hardware is Hard When it is...
	Slide 16: The Idea of a Virtual Platform
	Slide 17: Running the Real Software
	Slide 18: Inside a Typical Virtual Platform
	Slide 19: Intel® Simics® Simulation: Level of Abstraction

	Simulation use cases
	Slide 21: The Intel® Simics® Simulator Use Cases
	Slide 22: Virtual Platforms & the Product Lifecycle
	Slide 23: Getting the Architecture Right
	Slide 24: Computer Architecture (on Virtual Platform)
	Slide 25: Computer Architecture: for Subsystem
	Slide 26: Instruction-Set-Level Computer Architecture
	Slide 27: Getting Software Done Early
	Slide 28: Shift-Left / Early Software Development
	Slide 29: Shift-Left: With the Ecosystem
	Slide 30: Testing Software at the System Level
	Slide 31: System-Scale Simulation Example
	Slide 32: Continuous Integration and Virtual Platforms
	Slide 33: Allowing More Tests for Difficult Hardware
	Slide 34: Virtual-Platform-Based Guided Fuzzing
	Slide 35: Integrating Environment Simulation

	Simics Technology
	Slide 36: Intel® Simics® Simulator Technology
	Slide 37: Intel® Simics® Simulator Architecture
	Slide 38: System Level Features
	Slide 39: Debugging Features

	Performance
	Slide 40: How to build a fast virtual platform
	Slide 41: What Performance do you Need for a Particular Use Case?
	Slide 42: Intel® Simics® Simulator Instruction Execution
	Slide 43: Threading in the Simics® Simulator – Use Cases

	Scale
	Slide 44: Inside a Modern System-on-Chip (SoC)
	Slide 45: Result: Virtual Platforms get Bigger Over Time

	Device modeling
	Slide 46: Parts of a Device Model – More Details
	Slide 47: The Device Modeling Language

	Abstractions and fw
	Slide 48: Working with Firmware and Subsystems
	Slide 49: Model Abstraction Levels/Variants

	Misc
	Slide 50: Coding in All the Languages

	Finishing up
	Slide 51: Open for questions and discussions!
	Slide 52: Public Release of Intel® Simics® and Intel® Integrated Simulation Infrastructure with Modeling (Intel® ISIM)
	Slide 53: Legal Disclaimers

	End
	Slide 54

