
Intel® Simics® Virtual
Platforms in Embedded
Systems and Silicon
Engineering
Jakob Engblom, Director, Simulation Technology Ecosystem

3Intel® Simics® Virtual Platforms in Embedded Systems and Silicon EngineeringCopyright © Intel 2023

Introducing Intel

O N E I N T E L O V E RV I E W

Software
Silicon &

Platforms
Packaging
& Process

At-Scale Manufacturing

intel advantage

O N E I N T E L O V E RV I E W

Client Computing Datacenter & AI Network & Edge

Accelerated
Computing Systems

& Graphics
Automotive Foundry Services

Make PCs
indispensable
for work, play,

learning, creating
and collaborating

with a vibrant
ecosystem

of innovation

Develop the best
cloud and data

center solutions
for diverse
customer

workloads with
leadership in AI

Provide cloud
to intelligent

edge network
infrastructure by
delivering 5/6G,

Edge-AI, NIC/
Switch, SiPh
and Software

disruptions
at scale

Become the
No. 1 provider

of accelerated
compute through

graphics, GPU
and HPC – first

to Zettascale

Be the leading
provider of

autonomous
vehicle

technology

Become the
No. 2 foundry
provider this

decade

O N E I N T E L O V E RV I E W

Network/Edge

Floating Point
Standard

Standards

DDRx Responsibility
Sensitive

Safety

RSS

on the Intel Developer Catalog
for developers to create and

deploy solutions

Software
tools &
resources 450+

Linux kernel corporate
contributor since 2007

#1

Foundations and standards
bodies with Intel

700+
on the Intel Developers

Catalog for AI workloads

Software
tools &
resources 150+

community managed projects
contributed to and maintained

300+
contributor to Kubernetes

top 10

O N E I N T E L O V E RV I E W

Intel
Worldwide

Headquarters
Santa Clara, California

Wafer Fabs Assembly & Test Future Site

Oregon Arizona New Mexico Ireland Israel VietnamChengdu MalaysiaCosta Rica GermanyOhio Poland

8Intel® Simics® Virtual Platforms in Embedded Systems and Silicon EngineeringCopyright © Intel 2023

The Intel® Simics®
Simulator

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 9Copyright © Intel 2023

The History of the Intel® Simics® Simulator

Development started in 1991

▪ Spin-off from research project

▪ Pre-silicon OS bring-up.

Virtutech founded in 1998

▪ Sun* & Ericsson* first customers

Acquired by Intel in 2010

Wide usage

▪ Intel-internal

▪ Intel ecosystem

▪ Commercial customers via Wind River*

▪ Academics and OSS via public release

Major milestones

▪ 2.0: Heterogeneous system models

▪ 3.0: Reverse execution & debug, 2005

▪ 3.2: Intel virtualization acceleration

▪ 4.0: Multi-threaded (coarse), 2008

▪ 4.2: Distributed simulation, 2009

▪ 5: Multicore multithreading, 2015

▪ 6: More threading & better support for model
integrations, 2018

• Added features and improvements added within major

• Integration with power, thermal, performance models

▪ Next: clean-up release to remove old
features

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 10Copyright © Intel 2023

Where do we Fit into Intel?

•Intel® Core®

•Intel® Atom™

•Chipsets

•Thunderbolt*

•Graphics Processors
(GPU)

Laptop and
desktop

•Intel® Xeon®

•Chipsets

•Infrastructure processing
units (smart network)

•GPU

•Bitcoin Miners (BZM)

Data Center

•Movidius

•Habana

•Intel® Xeon®

•GPU

AI and ML

•Ethernet

•WiFi

•Bluetooth

•GNSS

Connectivity

•SoC-FPGA

•FPGA

•eASIC hard-copy

FPGA
(to be spun out)

•Quantum computing

•Neuromorphic computing

•Software

Intel Labs

•Intel Foundry Services

Foundry

•OneAPI

•Development tools

•Compilers

•Simulation solutions

•Linux & Windows drivers

•UEFI & BIOS

Software

https://developer.intel.com/intel-isim

11Intel® Simics® Virtual Platforms in Embedded Systems and Silicon EngineeringCopyright © Intel 2023

Virtual Platforms
Why and What?

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 12Copyright © Intel 2023

Hardware: A Hard Development Platform?

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 13Copyright © Intel 2023

Hardware is Hard When it is in...

Not yet available Flaky prototype stage Not available anymore

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 14Copyright © Intel 2023

Hardware is Hard When it is...

Inconveniently large & complex Dangerous to play with Inaccessible & expensive

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 15Copyright © Intel 2023

Intel® Simics® Simulator

The Idea of a Virtual Platform

Apps

OS

HW

Run your software without the hardware – on a software model

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 16Copyright © Intel 2023

Inside a Typical Virtual Platform

Intel® Simics® Simulator

RISC-V* Simple

Linux

Serial

User Applications

plic

System memory map

Virtio
net

RISC-V
hart

RISC-V
hart

RISC-V
hart

Virtio
block

device

Virtio
block

device

Virtio
block

device

Virtio
random

Network

Other hardware

Operating system

User Applications

RAMclint

Processors

Devices

Buses and
interconnects

Buses and
interconnects

Unmodified
target

software

Bootloader

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 17Copyright © Intel 2023

Running the Real Software

Purpose:

▪ Test & debug the software and the software-visible aspects of the hardware

“Software” can mean many things…

▪ Firmware, that is deeply hidden inside a chip

▪ BIOS/Bootloader/UEFI, that is used to boot the machine

▪ Device drivers, that manage hardware for an operating system

▪ Operating systems

▪ Middleware, providing services for other software

▪ Applications, that any programmer would write

▪ Distributed systems, software running across many separate machines

▪ From bytes to terabytes of code!

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 18Copyright © Intel 2023

Goal: Fast & scalable simulation Transaction-level modeling (TLM) Lazy and agile modeling

Goal: run the real software Model function & basic timing Add timing and µarch when needed

Intel® Simics® Simulator: Level of Abstraction
S

c
o

p
e

 a
n

d
 s

p
e

e
d

Detail of model

A BT

A B

User application code

Target operating system (s)

Middleware and libraries

Target model includes all software-visible
functional aspects of hardware, such as
processor instructions, supervisor modes,
device registers, interrupts, etc.

Processor

instruction

set

System

memory map

(not bus

system)

Device

register

interface

Loose timing

model

Packet-level

models of

networks

Event-driven

simulation, not

cycle-driven

Time

Build up the model piece by piece over time, as use cases
materialize or become possible. Only model what is needed
for current use cases.

Processor

simulators

from designers

Cycle-

accurate

hardware

models

Power models
Processor

timing models

Cache model

(timing)

Boot/BIOS/UEFI Drivers

19Intel® Simics® Virtual Platforms in Embedded Systems and Silicon EngineeringCopyright © Intel 2023

Note:
Current Hardware and
Modeling Current Hardware

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 20Copyright © Intel 2023

Inside a Modern System-on-Chip (SoC)

System-on-Chip

Main software cores

Power
management Security

AudioWiFi USB-C
Image

processing

Graphics

AI/Neural Network accelerators

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 21Copyright © Intel 2023

A Distributed System at (My) Home (Office)

Work laptop

Thunderbolt
Type-C cable –
with power

Display with
Thunderbolt
docking

Attached to screen:

▪ Power – which is fed to
laptop over USB Type-C

▪ Keyboard

▪ Mouse receiver

▪ Speakers

▪ Microphone

▪ Camera

▪ Headset receiver

▪ Second display

Second
display via
DisplayPort

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 22Copyright © Intel 2023

Speakers

First ”Screen”Client Computer

Computer Setup = Distributed Systems

Audio
unit

Graphics
unit

Actual
display

Main
core

USB port

Ethernet
port

FW FW

Thunder
bolt

FW

Drivers

OS

Thunder
bolt

FW

Display
proc

FW

Keyboard

FW

Audio
jack

Mouse

FW
Imaging

LAN

USB

FW Camera

Display
port

Additional
display

FW

This is what we
need to

simulate to test
the system

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 23Copyright © Intel 2023

Result: Virtual Platforms get Bigger Over Time

2010 Model

2023 Model

Processors: 2
Devices: 100
Subsystems: 0

Objects: 200

Processors: 2-200
Devices: 2_000
Subsystems: 10

Objects: 100_000

Intel model library

Buses and interconnects (20+)

Processor cores (100+)

Devices (10000+)

More of the
system is

modeled, in
more detail

24Intel® Simics® Virtual Platforms in Embedded Systems and Silicon EngineeringCopyright © Intel 2023

The Intel® Simics®
Simulator

Use Cases

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 25Copyright © Intel 2023

Virtual Platforms & the Product Lifecycle

Design &
Architecture

Bring-up,
platform

development

(shift-left)

Application
development,

software
development

tools,
validation

Deployment
&

maintenance
of “old”

systems

Product Timeline

Test and
continuous

integration &
delivery

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 26Copyright © Intel 2023

Getting the Architecture Right

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 27Copyright © Intel 2023

Computer Architecture (on Virtual Platform)

“Build 1000 times in simulation, 1 time for real”

▪ Processor, pipeline, cache design

▪ New instructions & execution modes

▪ Hardware accelerator design

▪ Hardware-software interface design

▪ Hardware-software codesign & optimization

Software
Software

Software workload

Run on combined virtual
platform & architecture

model

Performance, time, power,
statistics, ...

Update
design &

model

Build model
Design / architecture

specification

Update
software

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 28Copyright © Intel 2023

Simics®

Computer Architecture: for Subsystem

Platform model

Target operating system

Detailed model of the
accelerator subsystem

Device driver

Core RAM

APIC

Disk

Benchmark, traffic generator, real-world application, …

Eth. Network

Target machine

OS

Traffic
generation

Firmware

Core

Network traffic
generation inside

or outside of
Simics

Design/architecture
model of the accelerator

block

(example here is a
network traffic

processing block)

Evaluate the
performance of the

accelerators under real
workloads

FLASH

USB Serial GPU

Evaluate the efficiency
of the

software/hardware
interfaces of the

accelerator

Traffic generator

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 29Copyright © Intel 2023

Intel

High-Level Computer Architecture

Example of architecture at the instruction-
set specification level

▪ “Flexible Return and Event Delivery” (FRED)

▪ New way to handle exceptions and interrupts in
the Intel Architecture

Intel® Simics® virtual platforms used as “test
hardware” for external software developers

▪ For Linux developers, provided together with
Linux kernel patches from Intel’s Linux developers
– software is needed

▪ Collect feedback from external (operating-
system) developers, improve the design

FRED specification

Virtual
Platform

Open-
source

developers
and external

vendors
Feedback

Revised FRED
specification

Updated
VP Open-

source
developers

and external
vendorsFeedback

Revised FRED
specification

Linux patches

Linux patches

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 30Copyright © Intel 2023

Getting Software Done Early

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 31Copyright © Intel 2023

Shift-Left / Early Software Development

Hardware/Software
Integration and Test

Hardware-dependent
software development

Hardware design and production

Virtual
platform

Hardware-dependent
software development

Hardware/Software
Integration and Test

Hardware design and production

Software development
and testing shifting left

Time

Traditional
workflow

Shifting
left using
virtual
platforms

Classic use case – Earliest examples from the 1950s

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 32Copyright © Intel 2023

Simics®

Future Platform model

Shift-Left: Going into Details with Firmware

User-level application code

Operating system (OS)

Core

RAM

Other devices

Subsystem

Core

Accelerator

Firmware

Core Core

Registers

Devices

Disk

Driver

Subsystem

Core

RAM

Firmware

CoreRegisters

Devices

S
y

s
te

m
 in

te
rc

o
n

n
e

c
t

Network

A. Test driver interaction
with subsystem firmware

B. Test how different
subsystems interact –
integration is always “fun”

C. Test firmware interaction
with other hardware

D. Test firmware interaction
with external world

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 33Copyright © Intel 2023

Shift-Left: With the Ecosystem

Chip/Platform

(Custom) Board

OEM Product

Silicon vendor builds basic code,
makes sure the platform works

Board designer adds more
components, ports more operating

systems, validates additional
functionality

Typically, this is a customer of
the silicon vendor, a separate
company

OEMs build on the boards to
build complete products.

Digital twins

Virtual system integration

Could be the same company as the board
designer, or yet another company

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 34Copyright © Intel 2023

Testing Software
at the System Level

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 35Copyright © Intel 2023

න𝑥

Model of physical systems

Physical hardware

RTL Simulator, FPGA
prototype, Big-box Emulator

Intel® Simics® Simulator

Intel Simics Simulator heterogeneous target system model

Using the Simulator as an Integration Platform

Operating system

Hardware drivers

User program Middleware

UEFI/BIOS/Boot code

User program

Simics
ISS

RAM

IO

Simics
ISS

TLM Model in
other framework

Simics
C/C++

Simics
DML Subsystem with

internal ISS
Python Xtor

DiskFlash Other
ISS

SystemC TLM
deviceSystemC

detailed model

SystemC TLM
system w/ ISS

Firmware

Firmware

Firmware

Detailed
architecture

model
PCIe

Device

Entire chip

Subsystem

Xtor

IO

Sensor

Actuator

https://www.intel.com/content/www/us/en/developer/articles/technical/the-more-the-merrier-building-virtual-platforms-for-integration.html

https://www.intel.com/content/www/us/en/developer/articles/technical/the-more-the-merrier-building-virtual-platforms-for-integration.html

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 36Copyright © Intel 2023

Allowing More Tests for Difficult Hardware

Hardware availability is often a
bottleneck in embedded systems
testing

Classic customer case

▪ Hardware = Integration testing every week

• Bugs creep back in

• Impossible to go Agile

▪ Virtual platforms provided more targets

• Integration testing daily

▪ = Higher quality, less rework, more agile
development flow

Virtual platform

Software Under
Test

Virtual platform

Software Under
Test

Virtual platform

Software Under
Test

Virtual platform

Software Under
Test

Physical platform

Software Under
Test

T
e

s
t

S
y

s
te

m

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 37Copyright © Intel 2023

Model of Customer System

Intel® Simics® Simulator process

Model of FPGA

Programmable fabricFixed processor subsystem

Testing with Many Models

User program

Linux* U-Boot*

Other simulator process

I2C

Simulator
integration

Other virtual platform process

Physics model

Custom chip
model

Firmware

Simulator
integration

Simulator
integration

I2C

Ethernet

ADC

GPIO

GPIOEthernet
RAM

Disk

Intel block

Proc.
Core

Intel blockProc.
Core

ADC

Customer
block

Customer
block

Customer
block

*Other names and brands may be claimed as the property of others

This kind of setup can be used
for a decade or more,

supporting software update
testing – way beyond shift-left

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 38Copyright © Intel 2023

Developer Changes or
Adds Code

Unit Test

Subsystem-Level Test

System-Level Test

OK

Pre-CI Test Build System

Tests running mostly on simulation in
order to:

• Do integration pre-si and post-si

• Shorten test latency

• Run each test more often

• Run more and more varied
configurations

• Provide suitable configurations

• Test what cannot be tested on
hardware

Continuous
Delivery

Quality
Assurance

Continuous Integration
and Virtual Platforms

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 39Copyright © Intel 2023

Applying standard fuzzing tools to hard-to-get-at software

▪ Drivers, embedded firmware, bare-metal code, bootloaders, …

C
al

la
b

le
/R

u
n

n
ab

le
 s

ig
n

at
u

re

ju
st

 li
ke

 a
 u

se
r-

le
ve

l t
ar

ge
t

Intel® Simics® Simulator Process

Firmware

Target virtual platform

Fuzz target

Input driver

Inputs

System monitor

Coverage collector

State manager

Fuzzing tool

Inputs

Control

Coverage (etc)

Results

Fuzzing Firmware using a Virtual Platform

Test driver

Fuzzed module/component

The virtual platform looks like
a fuzzable user-level targetUsing virtual platform

features to collect
coverage, detect failures,
and push inputs into the

target software

The fuzzing tool is
independent of the

virtual platform

Virtual platform
snapshots are used

to roll back target
state

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 40Copyright © Intel 2023

Insight into all
components

Synchronous entire-
system stop

Trace anything System-level symbolic
debug

Unlimited powerful
breakpoints

Record-replay debug Repeatability &
Reverse debug

Collaboration between
developers

Virtual Platform Debug Features

break –x 0x0000 length=0x1F00

break-io board.mb.sb.lan

break-exception int13

break-log "spec violation"

Test

Test

Test

Test

Test

Debug

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 41Copyright © Intel 2023

Open for questions
and discussions!

42Intel® Simics® Virtual Platforms in Embedded Systems and Silicon EngineeringCopyright © Intel 2023

Public Release
of Intel® Simics® and
Intel® Integrated
Simulation Infrastructure
with Modeling (Intel®
ISIM)

Download and Learn More at

https://software.intel.com/intel-isim

https://software.intel.com/intel-isim

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 43Copyright © Intel 2023

Legal Disclaimers

Intel technologies’ features and benefits depend on system configuration and may
require enabled hardware, software or service activation. Learn more at intel.com, or
from the OEM or retailer.

No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific
systems. Differences in hardware, software, or configuration will affect actual
performance. Consult other sources of information to evaluate performance as you
consider your purchase. For more complete http://www.intel.com/performance.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Other names and brands may be claimed as the
property of others.

*Other names and brands may be claimed as the property of others.

http://www.intel.com/performance

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 45Copyright © Intel 2023

Complete simulation system

Simulation of the world in
which the system operates

System being designed

Simics®

Integrating Environment Simulation

Simulation of the system mechanics,
electronics, physics, …

Actuator
simulation

Sensor
simulation

Different simulators used
for different parts of the

complete simulation

Control application

Control computer

Target OS

IO device

IO device

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 46Copyright © Intel 2023

Virtual Platform and Simulator Traditions

“Computer architecture”
Simulate performance, for the benefit of architects

“Hardware design”
Simulate actual hardware implementation, for validation & test

“Software”
Simulate functionality, for the benefit of software development

“Mechanical/physics/electronics”
Simulate the real world outside the computer, for control design etc.

Current
virtual

platforms /
digital twins

1950s

1960s

1990s

1940s

*Other names and brands may be claimed as the property of others

Copyright Intel 2021 | MIPT Guest Lecture 2021 | Scaling Virtual Platforms

Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering 47Copyright © Intel 2023

// Example device model
dml 1.4;

device sample_i2c_device;

import "simics/devs/i2c.dml"; // generic i2c
import "platform-i2c.dml"; // i2c logic shared with other platforms
import "fuse-common.dml"; // common platform fuse mechanisms

// generated code with register declarations
import "DevBank_gen_code.dml";

// instantiate the register bank from the file
bank regs is i2c_ctrl_reg_bank {
register hst_cnt { // Added manual code

method write_action() {
if (START.get() != 0) {

START.set(0);
send_start();

} } } }

// Generated file DevBank_gen_code.dml
dml 1.4;
import "access_templates_14.dml";

template i2c_ctrl_reg_bank {
param bank_reset_signal default undefined;

register hst_sts @ 0x00 is (read_write) "Host Status";
register hst_cnt @ 0x02 is (read_write) "Host Control";
// array of registers
register tx[i < 8] @ 0x08 + i is (read_write) "Transmit data";

// flesh out fields in hst_sts
register hst_sts {

field BYTE_DONE_STS @ [7:7] is (write_1_clears);
field INUSE_STS @ [6:6] is (write_1_clears);
...

https://github.com/intel/device-modeling-language

Make device modeling easy

▪ Make it hard to write bad models

Provide natural modeling constructs

▪ Register, bit field, banks, connects, ...

▪ Readability and maintainability

▪ Easy to generate register layouts from machine-readable
specifications

Powerful templating mechanisms

▪ Common behaviors

▪ Common types of devices

▪ Support library behind code generation

▪ ...

Generates C code with Intel® Simics® Simulator API calls

The Device Modeling Language

https://github.com/intel/device-modeling-language

	Default Section
	Slide 1: Intel® Simics® Virtual Platforms in Embedded Systems and Silicon Engineering

	Intel Global
	Slide 3: Introducing Intel
	Slide 4
	Slide 5: Product Leadership
	Slide 6: Open Platforms
	Slide 7

	Intel simulator
	Slide 8: The Intel® Simics® Simulator
	Slide 9: The History of the Intel® Simics® Simulator
	Slide 10: Where do we Fit into Intel?

	Intel Simics
	Slide 11: Virtual Platforms Why and What?
	Slide 12: Hardware: A Hard Development Platform?
	Slide 13: Hardware is Hard When it is in...
	Slide 14: Hardware is Hard When it is...
	Slide 15: The Idea of a Virtual Platform
	Slide 16: Inside a Typical Virtual Platform
	Slide 17: Running the Real Software
	Slide 18: Intel® Simics® Simulator: Level of Abstraction

	Real models
	Slide 19: Note: Current Hardware and Modeling Current Hardware
	Slide 20: Inside a Modern System-on-Chip (SoC)
	Slide 21: A Distributed System at (My) Home (Office)
	Slide 22: Computer Setup = Distributed Systems
	Slide 23: Result: Virtual Platforms get Bigger Over Time

	Simulation use cases
	Slide 24: The Intel® Simics® Simulator Use Cases
	Slide 25: Virtual Platforms & the Product Lifecycle
	Slide 26: Getting the Architecture Right
	Slide 27: Computer Architecture (on Virtual Platform)
	Slide 28: Computer Architecture: for Subsystem
	Slide 29: High-Level Computer Architecture
	Slide 30: Getting Software Done Early
	Slide 31: Shift-Left / Early Software Development
	Slide 32: Shift-Left: Going into Details with Firmware
	Slide 33: Shift-Left: With the Ecosystem
	Slide 34: Testing Software at the System Level
	Slide 35: Using the Simulator as an Integration Platform
	Slide 36: Allowing More Tests for Difficult Hardware
	Slide 37: Testing with Many Models
	Slide 38: Continuous Integration and Virtual Platforms
	Slide 39: Fuzzing Firmware using a Virtual Platform
	Slide 40: Virtual Platform Debug Features

	Finishing up
	Slide 41: Open for questions and discussions!
	Slide 42: Public Release of Intel® Simics® and Intel® Integrated Simulation Infrastructure with Modeling (Intel® ISIM)
	Slide 43: Legal Disclaimers

	End
	Slide 44

	Backups
	Slide 45: Integrating Environment Simulation
	Slide 46: Virtual Platform and Simulator Traditions
	Slide 47: The Device Modeling Language

