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Abstract
We have used a modified C compiler to analyze a large number of real-life commercial C
programs used in real-time and embedded applications. The total size of the sample used in this
study is more than 300 000 non-comment lines of C code, from 13 different applications obtained
from 6 different companies. Only the static aspects of the programs have been studied, i.e. such
information that can be obtained from the source code without running the programs. The code
was written for 8- and 16-bit embedded systems.

The purpose of the study is to guide our future research into practically useful WCET analysis
methods by identifying properties of real-time programs.

The programs studied were from application fields where parts of the program can be considered
timing critical, like control loops and real-time signal encoding/decoding and protocol processing.

The most important conclusions for the design of WCET tools are that:
§ It is not reasonable to assume that an entire real-time system is available as source code.

Parts of the system will very likely only be delivered as object files, for example OS code,
libraries, and company-specific reusable components.

§ Most functions in a program have very simple control flow. This fact should be exploited to
optimize WCET analysis.

§ Automatically-generated code is being used, even for small processors. This has the following
implications: parts of the program have not been written by humans, which means that it is
not possible to ask programmers for help in WCET analysis. Furthermore, automatically
generated code has a tendency to have a more complex structure than human-written code,
which invalidates certain simplifying assumptions, such as “real-time programs do not use
recursion”.

Rounding off the study, some other aspects of interest for embedded compiler implementers have
been investigated: the distribution of variable sizes and the composition of C switch statements.
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1. Introduction
The MARE (Measurements of Actual Real-time and Embedded programs) project is an attempt to
quantitatively investigate how real real-time and embedded programs are written.

The work has been performed by Jakob Engblom, PhD Student at Uppsala University and IAR Systems
AB, with helpful input from the other WCET researchers in the real-time systems group in Uppsala1 and
other WCET groups in Sweden2.

1.1. Rationale
This study is based the observation that when researching worst-case execution time analysis or building
embedded compilers, we often need information about how the programs we intend to process in our tools
are written. There is little published data in the field, and therefore we have gathered a set of real programs
and performed measurements on them.

Knowledge about how programs are written is useful for the following purposes:
§ Performing relevant research: our goal is to produce a tool that can be used in industrial practice.

This requires knowledge about how industry actually writes code. There is little to be gained from
making simplifying assumptions not supported by reality.

§ Prioritizing research: there are many research problems to be solved in the WCET field. Insight
into how real programs are written allows correct priorities to be set – frequent problems should be
solved before less frequent problems.

§ Testing and benchmarking: comparisons between different analysis methods should be performed
using realistic benchmarks and examples – i.e. code which resembles real embedded programs.

§ Confirming and dismissing myths: when discussing WCET analysis and its relation to real
programs, researchers and people from industry tend to use unverified assertions and assumptions
about how "real programs" are written – often with little empiric support. We hope to provide (at least
some) relevant empiric measurements.

If we want to perform relevant research, we need a map of the world we are researching.

1.2. Material
Thanks to our industrial partners, we have been able to obtain actual source code from actual commercial
software used in real-time and embedded programs. Unfortunately, we cannot distribute the code or name
the companies involved, due to non-disclosure agreements. All the code was written in C, using ANSI C
extended with compiler specific and machine specific keywords.

The total amount of analyzed code:
§ 13 different applications. The application areas were telecommunications (including protocol

management), vehicular control applications, and home and consumer electronics. On average, two
applications are from the same source. Most of the applications are in use in products on the market
today.

§ 477 source files (.c), using 942 header files.
§ 334600 lines of code (LOC): with a large span in sizes: the largest program was about 123000 LOC,

the smallest around 2000 LOC.
§ 5579 functions were defined3.
§ 17173 variables defined.

The processors used in the applications were:
§ The 16-bit Hitachi H8 processors – called H8/16 in the discussion in Sections 4.3 and 3.8 – this

includes a number of processors: H8S, H8/300H.
§ The 16-bit Siemens C166 family.
§ The 16-bit Mitsubishi MELPS 7700.
§ The 8-bit Hitachi H8 processors – called H8/8 in the discussion in Sections  4.3 and 3.8 – this family

of processors include the H8/300L, the plain H8/300, and the H8/500.
§ The 8-bit Zilog Z-80.
§ The 8-bit Motorola 68HC11.

                                                            
1 In particular, I would like to thank Andreas “Ebbe” Ermedahl and Hans Hansson.
2 I have received a lot of help from Jan Gustafsson at Mälardalens Högskola (MDH) in Västerås and
Thomas Lundqvist at Chalmers in Göteborg.
3 In the C language, a variable or function is defined when it is given memory to reside in or code to
implement it. An entity can only be defined once in a program. A function prototype declares a function,
and an extern declaration of a variable declares it. An entity may be declared several times without harm.
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We do not pretend or infer that this is an exhaustive or even representative sample of all real-time and
embedded applications, but we do think that the study gives a rough impression on how real programs are
written. Conclusions regarding the presence of certain features are probably accurate (since they have been
observed in the program code), but it is harder to draw firm conclusions about the absence of features.

Note that we have measured all code in the studied programs, not just the time-critical parts. The
motivation for this is that although only a small part of a program may be time-critical, performing WCET
analysis on this part will probably require knowledge about the entire program. In a commercial
environment, with a programmer working in a small part of a large project, assuming that each
programmer has a good intellectual grasp of how the entire system operates and how it affects her small
part is not reasonable.

1.3. Structure of this Report
This paper consists of the following sections:
§ Section 2 discusses the technical and methodological aspects of the study: how we measured, and

which measures were collected.
§ Section 3 discusses the measurements relevant to WCET analysis, and the conclusions we have drawn.
§ Section 4 discusses other measurements of interest, especially for embedded compiler builders.
§ Section 5 provides a final discussion on the conclusions to be drawn from this study.
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2. Methodology
The tool used in the MARE project was a research compiler created with the IAR Systems AB C/C++
compiler as a basis (we call it the MARE compiler). A statistics module replaced the code generator. The
front-end, consisting of the C/C++ parser and function-level optimizer was kept. Only the C mode of the
compiler was enabled. The optimizer was used in moderate size optimization mode, since size is usually
the constraining factor in small embedded systems.

The backend of the MARE compiler receives an intermediate representation of the parsed and optimized
program, and converts it to an internal format suitable for the analyses performed. Note that this has the
implication that our measurements are performed on the optimized intermediate code for the program, and
not on the source code. A number of standard compiler data structures are built: flow graph, dominator
trees, etc.

The MARE compiler processes C source files one at a time, and outputs a number of files containing
measurements (see Section 2.7 for the format of the files). These files are then joined into aggregate
statistics files (one for each type of measurement).

The data items in the files are tagged to allow the source of each item to be determined (usually we trace a
measurement back to the file, and maybe the function, where it was collected).

Since the source files were spread over a number of directories, a set of PERL programs and shell scripts
were used to automatically gather the information. Special files were used to track the specific compiler
settings necessary to compile each program. The whole system is reasonably fast, but slow if compared to
ordinary C-compilers. We manage to compile our entire material in about two hours (on a 300 MHz
Pentium II running Windows NT).

2.1. Why We Measure Optimized Intermediate Code
The statistics backend receives an optimized intermediate representation of the program. The reasons for
applying the optimizer to the parsed code and to measure at the intermediate code level are the following:

First, the properties of intermediate optimized code are more relevant to future tool construction and
research than source code properties:
§ Our research plans are to insert the semantic analysis component of a WCET tool at the same level in

the compiler: the optimized intermediate code.
§ The optimizer is one of the problems a WCET tool has to deal with, and we wanted to see how the

code looks after optimization.
§ The analysis of intermediate code allows us to get to the essential properties of the program, not the

accidental properties of the syntactical representation. We are not interested in indentation, variable
naming, while-loops vs. for-loops, etc., since this does not affect machine analysis of code.

Second, there are some good reasons for not looking too much at the source code:
§ Many relevant embedded programs are machine-generated, which generally makes them ugly and

hard-to-read. Making statements about such programs based on the look of the source code is not very
sensible.

§ When we get programs to analyze from industry, they are often obfuscated – all function names and
variable names are changed to meaningless combinations of digits and letters. More advanced
obfuscators can even rewrite the code structurally (changing looping constructs, for example), which
means that studies based on the source code style and syntax are irrelevant. A WCET tool used in
industrial practice would not be applied to an obfuscated form of a program.

Finally, performing the MARE analysis after parsing and optimization makes the tool simpler:
§ We do not need to handle the complexities of  the  C preprocessor – all preprocessing has already been

performed. Considering the use some programs make of the preprocessor, this is a significant
simplification.4

§ Erroneous code is never encountered – we get error handling for free from the modified compiler.
§ The compiler front-end handles special ANSI C extensions – we use the keyword-handling

mechanisms already present in the IAR C compiler to handle extended keywords.
§ The set of operations to handle is smaller – we only need to handle the essential operations of a

program: mathematical operations, comparisons, jumps, function calls, etc. We do not care about the
different ways to express them syntactically.

§ The resulting code is canonicalized by the optimizer, which makes the analysis simpler and faster,
with fewer special cases to handle.

                                                            
4 Another problem with source code analysis: how should preprocessor macros be treated? Like special
keywords, or like the constructions they actually expand to? They certainly affect the appearance of the
program.
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2.2. Mimicking other Compilers
The code we studied was written for a variety of embedded C compilers. This gives rise to certain
problems, since there are many compiler-specific features used to write embedded programs, and several
aspects of C semantics are implementation dependent. To handle this, we allow the MARE compiler to
mimic certain aspects of a compiler. The mimicking involves configuring the following aspects:
§ The size of types: how large is an int? How large is a double floating-point value?
§ Special keywords for modifying function declarations, variable memory placement, etc.
§ The available intrinsic functions. Intrinsic functions are functions which are converted into inline

assembly code by the compiler, typically to allow access to features not expressible in the C language
(like enable/disable interrupts) and to chip-specific features which cannot today be utilized by the
compiler (like saturated arithmetic).

Since the IAR compiler on which the MARE compiler is based is an embedded C compiler, the support
required to handle special keywords and intrinsic functions was already present. It was enough to declare
the special keywords available: there was no need to change the parser (which would be needed for an
ordinary C/C++ front-end). However, in some cases #defines had to be used to make certain keywords
have a syntax acceptable to the IAR compiler. This does not affect the measurements, since we only
change the syntax of the program and not the semantics.

2.3. Compilation Problems
There were some unexpected problems encountered when analyzing the programs, which in some cases
required modification of the source code to allow the programs to be analyzed:
§ In some cases, we were given more files than actually made up a program. To get correct results, we

had to remove the extraneous files. This was performed manually, using include-hierarchy graphs to
figure out which files actually belonged to a program.

§ Our research compiler is based on a modern and quite picky front-end, and many typing errors which
passed unnoticed before are now caught and reported as errors and/or warnings. In some cases, this
forced us to modify the code, but the effect should be minimal. Usually, it was sufficient to add a few
casts in the correct places, which does not affect our statistics. An especially common case is const-
misuses – most old C compilers treat const as a recommendation, but today, in the spirit of C++, the
checks are hard.

§ Some programs are structured with .c-files including other .c-files, in which case we only processed
the “root” .c-files, in order to avoid counting the same variables and functions twice.

2.4. Incomplete Programs
The file sets in the study only contained partial applications, or complete applications that rely on an
operating system. This limited the usefulness of certain measurements, since only functions actually
defined in the examined files have been subject to measurement (and not functions which are only declared
and called):
§ Function modifications using keywords: the statistics on function modification (see Section 4.1.1)

indicate that function modification was quite uncommon. However, there were some instances of
modified functions only being present in header files and never defined in the source files. These
functions either belonged to the operating system or to parts of the program which we did not have
available. This might cause some errors in the measurements.

§ The same problem applies to variables: many memory-attributed variables are system entities (I/O,
peripherals, MMU-control, etc.) which are never defined in an application, only declared (in machine-
description header files) and referred to.

The fact that operating system code is not analyzed is not a problem: this study is about embedded
applications, not about operating systems. Similarly, the lack of analysis of system entities is
unproblematic, since the number of hardware registers depends on the chip used and not on how the
program is written.

The incomplete applications may be a problem, since it is possible that the analyzed parts are in some way
atypical. We do not think that this is the case, since there are no big differences between the results for the
partial and the complete programs.

2.5. Available Information at the Intermediate Level
The following information about the program is available at the intermediate code level (after some basic
control-flow analysis of the code):
§ All declared and referenced symbols: their type, name, and other properties.
§ The program flow structure, as seen by a compiler: basic blocks and the flow edges between them (the

edges represent jumps and flow-through paths).
§ Dominators and post-dominators.
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§ The call graph (for a single file at a time).
§ All operations performed in the program (obviously), in the form of lists of intermediate instructions:

if, goto, add, sub, mul, store, load, load constant… (see any compiler textbook).
§ The references to variables and functions are symbolic: we have the names of all entities, but no

memory addresses, since we have not generated code.

The following information is not available at the intermediate level (the most important difference from
the source code is that all syntax is gone):
§ “Loop kind”: for or do-while or while or if/goto: the difference cannot be told.
§ typedef type names.
§ Names of structure types, union types, and other aggregates.
§ Comments
§ No program-global information, unless the entire program is stuffed into a single file and then run

through the research compiler.

The use of intermediate code means that we cannot detect issues like programming style, but only issues
revolving around the data and actions actually carries out by a program, no matter how the effect is
achieved.

2.6. Analysis Tools
The analysis of the collected measurements was performed using the Microsoft Excel spreadsheet. Graphs
were used to get visual impressions of the data, and cross-tabulation and selection of data to look for
relationships.

2.7. Format of Collected Data
This section describes all the measurements collected by the MARE compiler.

2.7.1. File.MARE
One line per file analyzed.

Field name Type Meaning

Program Information
Filename text Name of the compiled file, including .c suffix.
Programname text Name of the program the file belongs to
Application text Name of the application area for the program
TargetCPU text Name of the CPU the program was written for

Variables
Variables int Number of variables in the file
ScopeGlobal int Count of global variables
ScopeStatic int Count of static variables
ScopeAuto int Count of auto variables
ScopeParam int Count of parameters
VarConst int Count of const-declared variables
VarVolatile int Count of volatile-declared variables
VarMemAttr int Count of variables with explicit memory attributes set
VarNoInit int Count of variables with no-init attribute (variables which

should not be cleared on program startup)

Variable types (number of variables of each type)
char int 8-bit, signed
unsigned_char int 8-bit, unsigned
short int 16-bit, signed
unsigned_short int 16-bit, unsigned
long int 32-bit, signed
unsigned_long int 32-bit, unsigned
float int 32-bit floating point numbers
double int 64-bit floating point numbers
struct int All structures
union int All unions
array int All arrays
pointer int Pointers to data
code_pointer int Pointers to functions
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General counters
Switches int The number of switch statements in the file
DecisionNests int The number of decision nests in the program.

Function calls
FunctionCalls int Total number of function calls
StdLibCalls int Calls to standard library
UserLibCalls int Calls to user library
IntrinsicCalls int Uses of intrinsic functions
SameFileCalls int Calls within the file
FptrCalls int Calls to function pointers
ExternalCalls int Calls to other (external non-library) functions
RecursiveLoops int Number of recursive loops in the call graph
RecursiveFunctions int Number of functions involved in recursive loops

Function declarations
Function int Number of function declarations
FunctionModified int Number of modified functions
FunctionMonitor int Monitor-declared functions
FunctionInterrupt int Interrupt-declared functions
FunctionTrap int Trap-declared functions
FunctionTargetTAttr int Target-specific type attributes
FunctionMemAttr int Functions with memory attributes.

Function composition
FunctionInfinite int Number of never-returning functions
FunctionNoLoop int Number of functions containing no loops
FunctionNoDecide int Number of functions containing no decisions, i.e.

completely straight-line code – no loops, no decisions.
FunctionUnstructured int Number of functions containing unstructured flow

graphs.

Loops and functions
GlobalLoopDepth int Maximal depth of loops, including the effects of function

calls inside loop bodies. Per file, which limits the value.

2.7.2. File.MSWT – Switch information
Contains several lines: one for each switch encountered in the file.

Field name Type Meaning

File identification
Filename text Name of the compiled file, including .c suffix.
Function text Name of the function for the switch.

Information
Type text Name of the deciding type (same names as used in the

.mare file)
Min int Minimum value of switch (signed long interpretation).
Max int Maximum value of switch (signed long interpretation).
MaxDelta int Largest difference between two successive cases
ActualCases int The number of cases in the switch
Span int The size of the span [min, max]

2.7.3. File.MLOP – Loop information
Contains several lines: one for each loop-nest encountered in the file.

Field name Type Meaning

File identification
Filename text Name of the compiled file, including .c suffix.
Function text Name of the function for the loop.

Information
Depth int Depth of the loop nest.
Exits int Number of exit edges in the loop nest – both from inner
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loops to outer loops, and out from the loop nest
altogether.

Blocks int Number of blocks in the (largest) innermost loop.

2.7.4. File.MIFS – If-nest information
Contains several lines: one for each if-nest encountered.

Field name Type Meaning

File identification
Filename text Name of the compiled file, including .c suffix.
Function text Name of the function for the if-nest.

Information
IfDepth int Depth of the if-nest
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3. Results Relevant  for WCET Analysis
The original motivation for the MARE project was to investigate whether it would be possible to simplify
our initial approach to WCET analysis by ignoring hard-to-handle but unimportant aspects of the C
language. In this section, we go through the results of the measurements we consider relevant for the
design of WCET analysis tools5. In the next section, we will look at some other interesting observations
which do not have any immediate interest for WCET analysis.

3.1. Recursive Calls
Recursive calls are theoretically equivalent to imperative loops, but are much more difficult to analyze in a
language not designed for recursion (like C). The study found a total of 14 recursive call loops involving
18 functions in the (almost) 5600 functions we analyzed.
§ 2 were in user-interface code managing menus.
§ 1 was a filter which used list-processing and dynamic data.
§ 1 was a recursive expansion used in text processing (naturally recursive algorithm).
§ 10 were part of automatically generated code (from an SDL-tool).

What might be surprising is that these programs were written to run on small 8-bit processors (albeit with
reasonable stack handling).

Obviously, user interface and text processing code is unlikely to be hard real-time critical (i.e. requiring
WCET analysis). The automatically-generated sequences of code, however, are often protocol handlers
which do have timing constraints on them.

Conclusion: recursion is probably not too common, but cannot be ignored in the long run. Ignoring it in a
first version of the tool is not too limiting.6

3.2. Unstructured Flow Graphs
Unstructured flow graphs (also known as non-reducible graphs) make analysis of a program more complex.
We found 18 instances of non-reducible flow-graphs in the examined functions. Since it is well-known that
all programs can be written without resorting to unstructured flow graphs, the functions containing
unstructured flow-graphs were examined to see why they were unstructured.

Result: most of the functions were automatically generated state machines implemented using gotos. The
few remaining were human-written functions with no unstructured constructions in the source code; the
compiler had introduced unstructured flows during the optimization process.

Thus we cannot reasonably expect all our programs to be perfectly structured, especially not when we use a
high-powered optimizer. Furthermore, the automatically-generated code over which the programmers
typically have very little control contains several instances of unstructured flow graphs.

Conclusion: we must be prepared to deal with unstructured flow graphs, and since this problem is easier
than dealing with recursion, we should do so quite early in the development process.

Alternatively, we could discuss the quality of generated code with the code-generator vendors, and maybe
try to avoid using destructuring optimizations for time-critical programs. This is a much more difficult
solution however, especially since avoiding unstructured optimizations severely hampers the efficiency of
an optimizer.

3.3. Loops
Loops are one of the principal difficulties in WCET analysis (the other two are conditional statements and
function calls). Several measurements were performed in order to try to determine the difficulty level of
loops to expect when (statically) analyzing real-time and embedded programs.

There were 1414 loop nests in the analyzed programs. Note that the way in which the loops are written in
the source code is of no importance here: for loops, while loops, do-while loops, and loops constructed
using gotos are all considered equivalent. This is the usual compiler construction view of loops as edges
going back into the flow graph.

The difficulty of obtaining a loop bound for a loop is sometimes related to the source code: for a textbook-
like for loop with an obvious bound is easy to analyze. However, it is still possible for the program to exit

                                                            
5 We are considering high-level analysis here: tools that analyze the program flow in order to find loop
bounds, infeasible paths, etc.
6 Another course of action would be to discuss the quality of the generated code with the companies
producing code generators.
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a loop prematurely using break. To be relevant, measurements of the difficulty of loop bounds analysis
require a specific loop bounds analysis model to be assumed. The difficulty is always relative to a certain
analysis, and cannot be measured as an absolute value. This is why no such measurements are included in
the MARE project.

3.3.1. Loop nesting depth
The nesting depth of loops affect the complexity of the loop analysis. Our data indicates that few loop nests
are very deep: 91 % of the analyzed were single-nested, 8 % double-nested, and only 1 % triple- or
quadruple-nested. There were no loops with a loop nesting depth greater than four. Figure 1 shows the
distribution of loop nesting depths.

Distribution of loop depths
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Figure 1

Note that the loop nesting depth of programs considered across functions certainly can exceed four. The
present study was limited to file scope, and the greatest loop nesting depth across functions found was
seven (for example, this could mean that a function containing a quadruple-nested loop was called from the
innermost loop in a triple-nested loop).

Conclusion: we need methods for loop bound analysis and data structures to describe loop bounds which
are linear (or close to linear) in the loop nesting depth. Methods and data structures which grow in size and
time depending on the actual number of iterations of loops are not useful in the general case (since the
expected size of the data and would be exponential in the depth of the loop nests, and the run time
proportional to the run time of the program analyzed).

3.3.2. Number of exits
If loops have more than one exit, analysis is made slightly more complex. Extra exits typically take the
form of break statements or gotos to labels beyond the end of the loop. The main problem for WCET
analysis is to correctly account for the fact that only part of the loop body is executed on an early exit.
Figure 2 shows the distribution of extra exits for all the loop nests in the analyzed programs.

§ -1 means that the loop never exits: we have fewer exits than loops.
§ 0 means that the loop nest has exactly the same number of exits as loop nesting levels, i.e. each loop

has exactly one exit. This is a C loop written without any “break” statements.
§ Positive numbers indicate that the loop nest contain extra exits.
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Figure 2

About 65 % of all loops contained the same number of exits as loop nesting levels, indicating well-behaved
simple loops. About 3 % contained fewer exits, meaning that they never terminate. 25 % contained one
extra exit. The loops with more than one extra exit comprised about 7 % of the loops.

Conclusion: there are several loops with multiple exits, even though single-exit loops dominate. A loop
analysis method should be able to handle the case that a loop exits early in the body.

3.3.3. Loop complexity
The complexities of the bodies of the innermost loops of loop nests have been measured, to get a rough
measurement on the complexity of the code in loops. The measurement used is the number of basic blocks
in the body of the innermost loop. Figure 3 shows a graph of the results.

Only 11 % of all loops have simple, straight-line bodies (a single block, which is equivalent to a simple do-
while loop, see Figure 4). The large number of loops (34 %) with two blocks represent simple for-style
loops which begin with a check for exit, perform their work, and then loop back to start (see Figure 4).
About 90 % of all loops have 10 or fewer blocks in the innermost loop.
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Distribution of loop body complexity
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Figure 3

The loops with just one or two blocks are simple flow-through loops with no other decisions than the loop
termination condition, which are simple to analyze. Loops with more than two blocks in the body are more
complex, since they necessarily contain at least one decision more than the basic loop control.

1-block loop body 2-block loop body

Figure 4: Structure of loop bodies

Conclusion: we cannot assume that loops have simple bodies. This points in the same direction as the
conclusions in Section 3.3.2 – loop body analysis will have to handle complex loop bodies, with multiple
exits.

3.4. Conditional Statements
Conditional statements are one of the main determiners of program flow. The complexity decision was
measured by looking at the decision depths of each decision-nest.

Definition: a decision nest is a single-entry-single-exit fragment of the flow-graph where the bottom (exit)
node post-dominates the top (entry) node of the flow graph fragment, and the top node dominates the
bottom node. The intuition is to capture a region of the graph where the flow splits into several branches
and then rejoins again.

Definition: the decision depth of a decision nest is the maximum number of splits in the flow graph that we
can traverse on the path from the top to the bottom node. An ordinary if-then-else has a decision depth of
one. A plain switch also has a depth of one. Nested ifs, switches, and loop constructs are necessary to
produce greater depths.
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The programs we measured contained 5604 decision nests. The distribution of the decision depths are
shown in the graph Figure 5.
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Figure 5

We note that almost half (49 %) of the decision nests are simple, but that there are some extremely
complex nests. The problem with complex decision nests comes when we want to describe or analyze
which paths can actually be taken: the infeasible paths problem.

The maximum observed depth in the investigated sample is 121, which means that there are 2121 possible
paths through that particular nest. This is caused by a structure of the following type:

if( C1 )
{
  if( C2 ) {}
  if( C3 ) {}
  ...
}

In other words, inside an if-statement there is a (long) series of subordinate ifs, which means that the
number of decisions made before the flow rejoins is 121. This kind of structure is reasonable, but hard to
analyze, pointing to a very tricky problem for WCET analysis.

Conclusion: as for loops, we need compact ways of representing feasible and infeasible paths, and efficient
ways to deduce the paths which do not need to enumerate all possibilities.7

One approach would be to use exact techniques for simple nests, and switch to less exact methods for more
complex nests.

3.5. Function Calls
The third major problem for WCET analysis is function calls. The programs examined contain 13835
function calls. Figure 6 shows how the function calls are distributed are distributed between the following
categories:
§ External calls are to functions defined in other files (other parts of the same program, operating

system, etc.).

                                                            
7 This is a requirement on path analysis. We have no good ideas on how to achieve this – considering the
huge complexity of certain decision nests, it is by no means a trivial task.
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§ Function pointer calls are calls to function pointers.
§ Same file calls are to function defined in the same file.
§ Intrinsic calls are calls to intrinsic functions (for an explanation of intrinsic functions, see Section 2.1).
§ Standard library calls are calls to the C standard library (printf() etc.).
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Figure 6: Types of function calls, for each program and for the total sample.

3.5.1. External calls
External calls pose a problem if the entire program is not available for analysis, which is highly unlikely,
since most programs make use of libraries and/or operating systems which are unlikely to be delivered in
source form.

However, to allow linking, the external code must be compiled with the same compiler as the application
program (or at least a compiler which delivers the same intermediate format). This means that it is quite
reasonable to have the manufacturers analyze their program parts with the same compiler/WCET tool as
the application programmer is using, and then deliver the results as a part of the product package (just like
operating systems are delivered in binary format today).

Conclusions:
§ The first conclusion is that analysis of WCET across functions on a file-per-file basis is impossible.
§ The second conclusion is that it would be advantageous if a WCET tool would allow “separate

compilation” just like C compilers do. It should be possible to (partially) analyze each file in isolation,
and then “link” the results.

3.5.2. Function pointers
Function pointers comprise a problem for WCET analysis (and all other forms of data and/or control-flow
analysis), since a program can theoretically call any function in the program by using a function pointer
(we ignore the pathological possibility of jumping to some random place in memory, since this should
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typically result in a crash). WCET analysis needs to at least limit the set of reachable functions, which can
only be done by using global pointer analysis.

In program 1 in the graph, about 40 % of all function calls are via function pointers. This is because the
program uses a large global dispatch table to allow parts of the program to be changed without forcing
recompilation and re-linking of other parts. Four of the programs do not use function pointers at all, and the
total incidence is about 4 %.

Conclusions:
§ There is obviously a requirement to handle function pointers, since they are used in embedded and

real-time programs.
§ Some method for global pointer analysis needs to be employed in order to figure out whereto function

pointers point.

3.5.3. Intrinsics and the standard library
Control over the compiler also gives control over the intrinsic functions and the standard library. Intrinsic
function can be handled like any other code in the WCET analysis: it is simply a special way to enter
certain machine instructions into the code.

The standard library is used in most programs (11 or 13 programs used it in this study). Typically, the
standard library is the same for all programs written using the same compiler (it is delivered as a set of
header files plus a set of compiled object files – access to the source code normally costs extra), and it
would be sensible to pre-analyze it (just like for other libraries, as discussed in Section 3.5.1). In most
respects, the standard library is just like other libraries, except that it is under the control of the compiler
manufacturer (which in our case means the WCET tool manufacturer).

Conclusions:
§ Intrinsic functions pose no problems.
§ It would be advantageous if the standard library could be “pre-analyzed” to speed the WCET analysis

process.

3.6. Non-terminating Functions
In general purpose computing, a function which never returns does not make sense, since a program is
invoked to perform some given task, and is expected to terminate once that task is completed. In embedded
programs, this is not necessarily the case, since a program is written as a set of task where certain tasks
should run as long as the device is on. The main body of a task is typically written as a never-ending
function.

Confirming this hypothesis is the fact that ten of the thirteen programs we investigated (and note that we
are usually talking about fragments of complete applications) contained non-terminating (never-ending)
functions.

Assuming that the non-terminating functions are tasks, it would make sense to estimate the time needed
between two operating system calls (like a delay which puts the process to sleep, waiting for its next
invocation). This would require the cooperation of the operating-system vendor in the creation of a WCET
tool (which makes sense).

Note that non-terminating functions as defined here are functions which do not even contain the possibility
of an exit (no return statement or flow that goes to the end of the function). Functions which may be non-
terminating, but which do have (conditional) flows ending in an exit from the functions do not count as
non-terminating. An non-terminating function must be written in a manner similar to the following:

void foo(void)
{
  while(true)
  {
     <no exit or return statements>
  }
}

The problem of terminating loop bound analysis for complex loops (where it is hard or impossible to
automatically prove that all possible executions will always terminate) is different and much more difficult
(equivalent to solving the halting problem). Here, heuristics and maybe user interaction will have to be
used to correctly analyze the loops.

Conclusion: the WCET analysis should handle non-terminating functions gracefully, preferably by
assuming that they are tasks and giving a timing for the body of the non-terminating loop.
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3.7. Simple Functions
Many functions defined in computer programs are quite simple and do not include any control-flow
change, like reading or setting a certain value, performing some calculation, or updating some global state.

In the programs we measured, we found that 33 % of all functions contained no control-flow change – i.e.
the functions were simple flow-through, one-basic-block functions. Furthermore, 80 % of all functions
contained no loops (this includes the 33 % flow-through). The remaining functions contained loops.

Figure 7 shows the results from our measurements:
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Figure 7: Function complexity for the 13 studied programs, and the total set.

These results are interesting for optimizing WCET tools: a function that lacks control-flow should have an
approximately constant execution time (unless caches are taken into account). This should allow a tool to
analyze the function only once, and then use the derived result for other calls to the same function.
Furthermore, certain methods can be applied to non-looping code that might be more efficient than general
methods.

Conclusions:
§ A WCET tool should be optimized for only analyzing simple functions once.
§ Different strategies could be employed depending on the complexity of a function.

3.8. Variable scopes
The scopes of variables can be a source of problems for WCET analysis. Especially global variables and
static variables (local variables which retain their values across calls to the same function) make flow
analysis based on data values difficult, since a much larger set of statements can affect the value of the
variable.

The concept of scope for variables used in the MARE project is that defined by the C language. There are
the following scopes available:
§ Parameters are parameters to functions. They get their value when a function is called, and they

disappear when the function returns.
§ Auto variables are local to a function. They are appear (with a random value or initialized) when the

function is called, and disappears when the function returns.
§ Static variables are local to a function, but retain their value across function calls. They cannot be

modified by any other functions.
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§ Global variables are declared outside any function, and can be modified by any function.

Figure 9 shows the distribution of variable scopes across the programs. No firm conclusions can be drawn
from this data. The proportion of global data varies between 5 % and 60 %, but in general a majority of all
variables are autos or parameters, i.e. local to function call.
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Figure 8: Distribution of variable scopes for the 13 programs and the  total set.

Another possibility is that the type of processor has some effect on the scopes of variables used (a common
assumption among embedded compiler writers is that programs for processors with poor stack handling,
like the Z-80, would have a higher proportion of global and static variables to avoid time-consuming stack
operations). Figure 9 shows the result.
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Distribution of variable scopes
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Figure 9

There are few conclusions to be drawn from this data. It seems that the variance has more to do with
programming style than the processor used, especially the proportion of global data.

Conclusion: embedded programs do use static and global variables, and this difficulty has to be dealt with.

3.9. Variable types
Figure 10 shows how the relative frequency of the types of variables in the measured programs. The
categories used are the following:
§ Integer variables: int, char, short, long.
§ Float variables: float, double, long double8.
§ Structures and unions.
§ Arrays.
§ Pointers, i.e. pointers to data.
§ Code pointers, i.e. pointers to functions.

It is clear that integers and pointers are the most popular types of variables. For WCET analysis, the large
number of data pointers is worrying. Note that most pointers are not problematic – pointers used to pass
arguments into functions are usually quite easy to handle; the real problems are caused by global pointers,
which can point anywhere. Any write to an unknown global pointer invalidates all data value analysis; this
can only be handled by employing global points-to analysis (which is common in whole program analysis).

                                                            
8 Note that long double is hardly ever separate from double, and that all three floating point types often
have the same size (32 bits). Also note that the few floating-point variables found were all of the float
type.
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Conclusions:
§ Float values can be ignored in a first version (this is probably a quite small simplification, however).
§ The large number of pointers make points-to analysis a necessity for an industrial tool. It is likely that

handling only simple pointers (function parameters and local pointers) is a reasonable level of
ambition for prototype tools.

3.10. Automatically Generated Code
From the investigated programs, it is clear that automatically-generated code is being used in the
development of real-time and embedded programs, even for small processors.

The use of automatically generated code makes it much harder for a WCET tool to rely on user
annotations. Use annotations are often used today to determine loop bounds (and other relevant
information), but the user is unlikely to understand the generated code well enough to give sensible bounds
(especially since the code is really hard to read).

Conclusion: automatic analysis of programs is preferable to user annotation, at least for code which has not
been written by humans.
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4. Other Observations
The previous section discussed various observations and results relevant to the construction of WCET
analysis tools. In this section, other observations will be discussed, mainly of interest for embedded
compiler writers.

4.1. Embedded Compiler Features
Compilers for embedded systems typically provide features not found in compilers for general-purpose
computing. It is interesting to see the frequency of use of such features.

4.1.1. Function modification
A common feature of embedded compilers is the possibility to modify function definitions and declarations
to indicate that they are to be used as interrupt handlers, use special calling conventions, and other
machine-specific features. This is very convenient for application programmers who do not have to care
about setting up interrupt vectors, correctly disabling and enabling interrupts, etc.

About 4.5 % of the functions defined in the investigated code used function modifiers. Out of these, about
one fourth were “interrupt” functions, usually with a vector number determining which interrupt vector to
attach to the function. The other three fourths were calling convention/memory placements keywords
associated with the banked memory models used on the Hitachi H8 and Motorola 68HC11.

It should be noted that the use of a real-time operating system didn’t preclude the use of function modifiers.
Interrupt functions are still set up, and calling conventions and memory placement modifiers are used.

4.1.2. Variable modification
Variables can be modified to indicate that they should be stored in certain memory areas. This was used on
about 1,3 % of all variables.

4.2. Const
About 17 % of all variables were modified by the const keyword.

const is often used to indicate that a certain “variable” is actually a complex constant, especially for arrays
and structures (since C does not support complex constants). The programmer’s intention is that the data
should be stored in ROM and not in RAM (which saves cost for microcontrollers which typically have
quite a lot of ROM for programs and constant data, and only a small RAM to use as a scratch area).

A common idiom was the use of static const struct to define complex constants for use as arguments to
functions.

4.3. Variable sizes
Figure 11 shows how the sizes of integer variables used vary with the type of processor (char means 8-bit
values, short means 16-bit, and long 32-bit). The C166, 7700, and H8/16 are sixteen-bit processors, the
others are eight-bit processors. The processors are introduced in a little more detail in Section 1.2.

It is hard to draw firm conclusions from this data. It is clear that smaller data types (char and short)
dominate, and that long is very rare. However, long is definitely more common on the 16-bit processors
(C166, H8/16, 7700) than on the 8-bit processors. The only 8-bit processor with a significant use of long is
the 68HC11. Also note that two of the 16-bit processors, the 7700 and C166 only have around 50 % char
variables, while all the other (including the16-bit Hitachis) have 75 % or more char variables.
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Conclusion: as could be expected, small data dominates programs for small processors.

4.4. Switches
The switches in the investigated programs have been analyzed with respect to a few simple properties. The
purpose was to provide some hints as to how to efficiently implement switch tables in a compiler. We have
performed the following measurements:
§ The span of the switch: the numeric distance between the smallest and the largest value (inclusive).
§ The actual number of cases used in the switch.
§ Density: the proportion of values between the smallest and the largest switch case values actually

covered by cases.

To clarify the concepts, consider the following (simplified) switch statement:

switch( X )
{
  case 1:
  case 3:
  case 4:
}

This has a span of four, an actual case count of three, and a density of 75 %.

The programs examined in the MARE project contained a total of 1122 switch statements.

Figure 12 shows the distribution of spans for the switch statements in the examined programs. Note the
non-linear scale on the x-axis.
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Distribution of switch spans
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The large number of switches with only a single case is a symptom of automatically-generated code, where
switches are in many cases used for decisions which could just as well be made using if-statements.

More than 50 % of all switches have a span less than 5, and 75 % less than 20. This indicates that most
switches contain quite few cases.

Figure 13 shows the distribution of switch densities. It is clear that most switches are quite dense.
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For code-generation purposes, the density of a switch determines which implementation is the most
efficient (spacewise):
§ For dense switches, a direct-indexed jump table can be used. In the analyzed programs, about 58 % of

switches have a density over 90 %, which should mean that a simple jump table should be very
efficient.

§ For somewhat sparser switches, down to 50 %, a switch table is still efficient, and this makes up a
further 23 % of the switches, for a total of 71 % of switches which can be efficiently handled by jump
tables.

§ For very sparse switches, the best implementation is a series of compares and jumps, or a table
containing value-label pairs. About 22 % of the switches fall into this category, with a density of 20 %
or less.

§ For intermediate-density switches, there is no obvious implementation. The switches between 20 %
and 50 % density only make up about 7 % of all switches, which means that this is quite a small
problem.

A further question is whether the span and density is related in some way. The plot in Figure 14 shows a
plot of span (on the logarithmic Y-axis) vs density (on the X-axis) for all the switches in the data.
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Some conclusions and observations:
§ There are a few outliers: the points in the upper left of the diagram. The most extreme switch has a

span of 40000 and only 7 actual cases. The other two have spans of 18000 (a jumble of hexadecimal
constants used in an operating system) and 16384 (a bit-mask switch [case 1, case 2, case 4, …, case
16384]).

§ Note that most of the switches actually belong on the 100 % axis (about 50 %). This indicates that the
majority of the switches are dense and contain less than 50 cases. There are no very large and very
dense switches.

§ The nice smooth curve on the lower-left looks interesting, but it is only an unavoidable mathematical
consequence of the relation between the plotted variables:
§ To make a switch with a low density, you need a large span. There is no way to construct a switch

with a density of 10 % and a span less than 20 (the smallest is case 1, case 20 – since you need at
least two cases to create a span, and 2 is 10 % of 20).
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§ To make a really dense switch, you need  at least 1/(1-density) cases: for a density of 90 %, you
need at least a span of ten (case 1, case 2, ..., case 10 – with one case missing). This rule does
not apply to the 100 % dense switches: when all cases are covered, the span can be anything
between one and eternity.

Figure 15 shows a plot of the switch density vs the number of actual cases.
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 Some observations:
§ Sparse switches in general contain few actual cases, which means that a compare-jump

implementation will be very efficient.
§ Most switches contain 25 cases or less. For an embedded compiler, there is little to be gained from

optimizing switches with many cases.
§ The most problematic switches, for code generation, are the sparse switches with many cases (between

20 % and 50 % density, which means that jump tables could get very large). There are a few of those
in the data.
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5. Conclusions

5.1. Information on Embedded Programs
The conventional wisdom in the embedded and real-time research community and industry is that “there is
no such thing as a typical real-time/embedded program”. Even so, there are some observations we would
like to make:

Embedded programming is closer to the hardware than ordinary desktop programming:
§ The importance of storing data in ROM when possible makes for heavy use of static const variables.
§ Because of performance and memory-consumption constraints, smaller data types are preferred.

Memory is not cheap for embedded applications.
§ The features of the microcontroller used have an impact on the code, since the microcontroller was

chosen specifically for its features.
For more on embedded processors vs desktop processors, see [1].

The structure of the programs exhibit some interesting features:
§ Non-terminating loops are used to create tasks. The presence of non-terminating loops in desktop

programs is almost invariably a bug. In an embedded application, it is quite reasonable.
§ A large number of functions are simple, which indicates that procedural abstraction is being used.

Programs are not written as large spaghetti functions.
§ gotos are not used indiscriminately, except by automatically-generated code.

Operating systems are used even on 8-bit processors – but note that the 8-bit processors used for the
investigated programs are actually quite sophisticated. The Z-80, for example, has been used to implement
multi-user minicomputers.

5.2. Conclusions for WCET Tools
We believe that this study has provided some very important guidance for our efforts to create a useful
WCET tool. The following conclusions can be drawn:

Program structure and language features:
§ Unstructured flow-graphs have to be handled. They appear both in automatically generated code and

in ordinary code after optimization.
§ Recursion will need to be handled, at least in its tail-recursive form. This can be postponed, but not

for too long.
§ Non-terminating functions require checks for termination in loop analysis methods.
§ Function pointers must be handled to some extent. Probably a reasonable level of ambition is to

handle function pointers with constant contents. Function pointers passed as arguments should be
handled as well.

§ Global variables are common and cannot be ignored.
§ The information provided by language extensions (see Section 4.1) should be utilized, if possible.

Complexity of analysis:
§ A majority of the examined functions contained no loops. This is interesting, since there are WCET

analysis methods which are very efficient but require non-looping code [2]. Such methods could be
used for simple functions, with more complex analysis methods applied only to more complex
functions.

§ For simple functions, it should be possible to calculate the WCET characteristics only once, and then
use the result of this analysis wherever the function is called. This vision is reminiscent of Chapman’s
work on the SPATS tool [3].

§ The presence of very deep loops and very complex decision nests require attention to the complexity
of the analysis methods.

The use of operating system, libraries available in binary only, legacy code, and automatically generated
code makes the reliance on annotations in the code unrealistic. We must automate the analysis of program
behavior. However, a programmer should be allowed to enter extra information to make the analysis more
exact.

Incomplete programs: the conclusion with the greatest impact on the architecture of our WCET tool is the
fact that we have to work with incomplete programs. This has the following implications:
§ It must be possible to analyze files and functions in isolation – for example, to allow operating-system

code to be analyzed by the vendor.
§ It should be possible to analyze parts of a program, even though large parts may be completely

unknown and not available for analysis. We cannot require access to the entire program.
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§ We need to make WCET analysis component-based and compositional.9

5.3. Summary and Future Work
The MARE project has given us more information than we originally hoped, and the results have been
surprising at times.

The most important conclusion is the need for component-based WCET analysis. The second most
important is that WCET analysis can be optimized by taking advantage of the fact that some parts of a
program are very simple.

In the future, we plan to use the MARE tools and results for comparison to other bodies of code, for
example the spec performance benchmarks, or benchmarks used to evaluate embedded compilers. It would
be interesting to contrast code for small 8- and 16-bit processors to code written for large 32-bit processors.
Finally, we would like to extend the base of programs used for the MARE project, in order to check if our
conclusions still hold.

                                                            
9 These conclusions fit well with the ARTES (A network for Real-Time research and graduate Education in
Sweden) [4] vision of the future of real-time and embedded programming as being component-based.
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